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Storing Information Inside Matter

Q Writing data = Perturb local state of particles

Q Atomic/subatomic interactions evolves local states

© Stable for “long” = Enables later data recovery

Goal: Study information storage capacity while:

@ Distilling notion of storage from particular technology
@ Capturing interparticle interaction and system’s dynamics

@ How much data can be stored and for how long?
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Stochastic Ising Model:

o Graph (V,&): topology of the storage medium.

@ Gibbs measure: on Q 2 {—1,+1}Y at inverse temp. 3

ﬂ—ﬁ(o_) X eiﬁH(U) = eﬁz{u,u}eg U(u)o(v)

@ Glauber dynamics (discrete time): At config. o € Q
© Select site for update v ~ Unif(V)
Q Refresh o(v) ~ 7T'B(~ ’{a(w)}w;éJ @) favors spin of neighbours’ maj.

Warm (8 small) = Weak interactions

Cold (p large) = Strong interactions
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@ Joint distribution: (X, X;) ~ Px,P!, P - transition kernel.

@ Desired operational meaning: size of maximal codebook.

o Graph: 2D /n x \/n grid

@ Warm: n-fold DM BSC (% + 0(1)) after t = O(n).

@ Cold: Can interactions (memory) help?
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Timet=0: [,(0)=n

— Uniform Upper Bound: I,,(t) <n, Vvt (DPI)

Linear Time: I,(t) = ©(n)
o Converse: See above.

o Achievability: Linear codes (Gilbert-Varshamov)

Q1: What (if anything) can be stored for infinite time?
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o Flip Probability: ¢; =P (7 <t), 7 = inf {t : X((]C) —HB& Xt(C) _ EI}.
o Lifshitz Law [Lacoin et a/'14]: Je,v > 0: }P(T < c-a(n)n) < eV aln)
— 1) 2 K- Czchamnel(@r)

— ()(c a(n)-n)>C-K = Q( )>

9/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time | Inf. Capacity | Comments

t=0 | I,(t)=n | Upper bound Vt

10/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time | Inf. Capacity | Comments

t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)

10/12



Storage in Zero-Temp. SIM - Summary

We’'ve Seen:
Time | Inf. Capacity | Comments
t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)
t = O(a(n)n) L(t) = Q (ﬁ) nlogn = I,(t) (iogn)
(n) — Q(nl a)

t=nlte = I,(t)

10/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time | Inf. Capacity | Comments
t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)
t=0(a(n)n " t =nlogn = I,(t) = Q (=
a(n) (= o(n)) In(t) = & <a(”)) t=nlt" = I,(t) = Q(ngioo‘g)n>
t— 0 I,(t) = ©(y/n) Lower bound V¢

10/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time | Inf. Capacity | Comments
t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)
t =0O(a(n)n " t =nlogn = I,(t) = Q (=
a(n) (= o(n)) In(t) = & <a(n)) t=nlt" = I,(t) = Q(ngio"‘g)n>
t — oo I,(t) = ©(y/n) Lower bound V¢t

Further Questions:

10/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time | Inf. Capacity | Comments
t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)
t=0(a(n)n " t =nlogn = I,(t) = Q (=
a(n) (= o(n)) In(t) = & <a(”)) t=nlt" = I,(t) = Q(ngioo‘g)n>
t— 0 I,(t) = ©(y/n) Lower bound V¢

Further Questions:

© Upper bounds better than n for ¢ < 00?

10/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time ‘ Inf. Capacity ‘ Comments
t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)
t = O(a(n)n) 1) :Q( N ) t=nlogn = In(t):Q(logn>
a(n)=o(n) | " oW/ = plte — I,(1) = Q(n'9)
t— oo I,(t) = ©(y/n) Lower bound V¢

Further Questions:

© Upper bounds better than n for ¢ < 00?

» Control absorption prob. max P, (X is absorbed| X = o) > 1 — €,

10/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time ‘ Inf. Capacity ‘ Comments
t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)
t = O(a(n)n) 1) :Q( N ) t=nlogn = In(t):Q(logn>
a(n)=o(n) | " oW/ = plte — I,(1) = Q(n'9)
t— oo I,(t) = ©(y/n) Lower bound V¢

Further Questions:

© Upper bounds better than n for ¢ < 00?

» Control absorption prob. max P, (X is absorbed| X = o) > 1 — €,

© Improved scheme for superlinear time?

10/12



Storage in Zero-Temp. SIM - Summary

We’ve Seen:

Time ‘ Inf. Capacity ‘ Comments
t=0 I(t)=n Upper bound V¢t
t=0(n) I,(t) = ©(n) No loss for ¢ = lin(n)
t = O(a(n)n) L) = Q( N ) t =nlogn = I,(t) = Q (1ogn>
a(n) = o(n) o) = plte — I,(t) = Q(n!79)
t— oo I,(t) = ©(y/n) Lower bound V¢

Further Questions:

© Upper bounds better than n for ¢ < 00?

» Control absorption prob. max P, (X is absorbed| X = o) > 1 — €,

© Improved scheme for superlinear time?

» Nesting infinitely many sub-squares with vanishing growth rates.
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Instability of Zero-Temp. SIM

Grid with External Field:

o Hamiltonian: H (o) = — ( > o(u)o(v)+h Y O'(U))

{u,v}e€ vey
o Tie-Breaker: Any h > 0 = Tied neighborhood goes +1

== All square-tilings with a(n) = const are stable.

Theorem (G.-Bresler-Polyanskiy’19)
For zero-temp. SIM on \/n x \/n grid with external field: I,,(t) = O(n), VtJ

Honeycomb Lattice (no external field):

o deg(v) = 3, Vv in interior
= |Stable set| = 20"
Theorem (G.-Bresler-Polyanskiy’19)

For zero-temp. SIM on Honeycomb lattice with
n vertices: I,(t) = ©(n), Vt
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Summary

@ A new model for information storage inside physical matter:

> Distilled from particular storage technologies

» Accounts for interparticle interactions
@ Interactions (low temperature) improve storage capability:

» Warm: Information capacity nullifies after linear time

» Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
@ Variations of zero-temp. dynamics:

» Grid with External Field: I,(t) = ©(n), Vt

»> Honeycomb Lattice: I,(t) = O(n), Vt

= Favorable over grid without external field (I,,(c0) = ©(y/n))

@ Low but positive temperature:

> 1-bit upper bound on storage for exponential (in n) time

> /n storage achievability for e’ time (store in stripes)

@ Available on arXiv: https://arxiv.org/abs/1805.03027
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Positive but Low Temperature: Long-Term Storage

@ Storage for indefinite time is impossible

Q: How long can we hope for?

Theorem (G.-Bresler-Polyanskiy’19)
Fix e € (0, %) ,v > 0. For B sufficiently large there exist ¢ > 0 s.t.
I(Xo; X¢) <log2 + en(B),

1 €
forallt >n - ecBni® , where Xy ~ 7 and lim,,_, €,(5) = 0.

= Storage beyond exponential time < 1 bit (X ~Gibbs)

— Long lasting X is atypical w.r.t. Gibbs
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Low Temperature Upper Bound: Proof Outline
o {X7}; is the chain initiated at o € Q,

o Couple {X7}4, for all o € Q,,, via monotonic coupling

e m(0) = 13 v € V,0(v) is magnetization ; o = B is all-plus state

Proposition (Martinelli’94)
Let €, v be as before. For [ sufficiently large there exist ¢ > 0 s.t.

> W(U)P<Xf # Xtaﬂ) <eWVR V> et

o€Qn:
m(a)>0

@ I(Xo; Xy) < H (sign(m(Xo)) ) + I (Xo; Xt‘sign(m(Xo)))

(2] H(sign(m(Xg))) <log2 ; I(Xo;X|sign(m(Xo)) = o(1) via

[Martinelli'94]
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Long-Term Storage: Scaling t with 3
@ In low-temperature regime we may scale t with
@ Can store y/n bits for exp(3) time!

Theorem (G.-Bresler-Polyanskiy’19)
For B and n sufficiently large, and c € (0,1), we have:

IP(t) = Q(v/n), VE<eb,

Storage Scheme:

@ Codebook: Set of all 2-striped configurations

o # 2-Stripes: 2°(vVn)

o Input: X ~ Unif ({2-Stripes})

@ Decoding: Majority decoding per stripe
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Reduction to Single Stripe Analysis

X & (o),

o Denote: t;= e ; X2 k=1

X0 '
¢ ‘Stripe j
o Decoder: 1); (Xt(j)) is majority decoder inside Xt(j)

19t > S 1(x§; X, [ x§ )
J
> > 1(x§0(X)|x57Y)
J
> O(yv/n) - Casc (]P’(More than half stripe fIipped))

== Suffices to analyze P(More than half stripe flipped)
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Single Stripe Case: Main Result

Bottom 1-Stripe:

@ 2-stripe reduction by glueing horizontal spins

o Strategy:

> Bound E[N™)(t;)], where N(H)(ty) £ # pluses in bottom stripe of X,

> High probability claim via Chebyshev

Theorem (Goldfeld-Bresler-Polyanskiy’19)
Fix any ¢,C € (0,1). For 8 and n sufficiently large, we have

ENH(t) > Cv/n, Vit <e®.
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Single Stripe Case: Challenges & Solutions

@® Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

® Interleaved Dynamics: 2 types of flips

» Sprinkle: Flip w/ all-plus horizontal neighbors

» Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:
O Initially chain stays close to Xy w/ occasional sprinkles

Q After sufficiently many sprinkle, drift driven by erosion

== Dominate {X;}; by a phase-separated dynamics
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[ 1 I I | | KN
1 T L B N | 7
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Single Stripe Case: Phase-Separated Dynamics (1)
o Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
0 0 <t <...<t <ty arethe k clock rings (at v1i,...,vy) until tf

@ Define new dynamics {Xt}te[O,Qtf} with first 2k clock rings and flips

tj, j S [k] Vj, ] S [k}]
Tj = ) , Uj = .
ti—k+ty, JE€ [k +1:2k] Vi—k, JE [k+1:2k]
{Xt}tE[O,tf]
1 1 1 1 Ll 1l | RN
I T T T L — —
0 & t, ts tats totrts
{Xt}te[oz,tf]
1 1 1 1 [ Ll 1 1 1 1 Ll L1l | KN
] T T T LI | T LI} 1 T T T LILI T LILI | K
0 71 1 T3 TaTs TeT7lg  Lf Tog Tyo T11 T12T13 T14T15T16 2t
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Single Stripe Case: Phase-Separated Dynamics (2)

X}

{ ttefo,2tf
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Single Stripe Case: Phase-Separated Dynamics (2)
{Xt}te[O,th]

| KN
| I

0 71 7 73 T4Ts Te T7lg tr Tg Tio Ty1 T12T13T1aTisTie  2lf

Blocking Rule:

© For t <ty allow only sprinkle flips (wrt original {X¢}ic(o,)
O For ty <t < 2ty allow only erosion flips (wrt original {X:}ic(0.t,])

@ Adjust Poisson clock rates of {Xt}te[0,2tf] to neighborhoods

Observations:
@ Erosion flips in {Xt}te[o,tf] = Erosion flips in {Xt}te[tf72tf]
@ Erosion flip rates in {Xt}te[tf,ztf] are faster.

——> New dynamics is a speedup: ~ EN)(¢;) > EN(H)(2¢))
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Sprinkle Analysis [0,%¢]: Ends w/ runs of ‘+'s separated by ‘-’ sprinkles
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Single Stripe Case: Phase-Separated Dynamics (3)
Sprinkle Analysis [0,%¢]: Ends w/ runs of ‘+'s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?
® Approx. bottom stripe sites by i.i.d. Exp(pg), ps = P(Sprinkle)

@ Approx. L; = ‘Length of Contig i’ by Geo(p/gl) = EL; 232 é

@ Show E[Number of contigs of this length] > 2‘_/;76

——> Bound expected number of pluses as EN(F)(2t;) > Q\waELi

B

Erosion Analysis (7,2t ]: Contig eaten w/ speed ¢g = T

(2

Sidgs{Half contig eaten in ¢y time} = {Efi/f Exp(¢p) < tf}

@ Show latter probability is small and conclude proof 1212



