Information Storage Capacity of Interacting Particle Systems

Ziv Goldfeld

Cornell University

Collaborators: Guy Bresler and Yury Polyanskiy

Beyond IID in Information Theory 8

Nov. 13th, 2020

Writing data

lacktriangledown Writing data \Longrightarrow Perturb local state of particles

- lacktriangledown Writing data \implies Perturb local state of particles
- Atomic/subatomic interactions evolves local states

- lacktriangledown Writing data \Longrightarrow Perturb local state of particles
- Atomic/subatomic interactions evolves local states
- Stable for "long"

- lacktriangledown Writing data \Longrightarrow Perturb local state of particles
- Atomic/subatomic interactions evolves local states
- ullet Stable for "long" \Longrightarrow Enables later data recovery

- lacktriangledown Writing data \Longrightarrow Perturb local state of particles
- Atomic/subatomic interactions evolves local states
- ullet Stable for "long" \Longrightarrow Enables later data recovery

Goal: Study information storage capacity while:

- lacktriangledown Writing data \Longrightarrow Perturb local state of particles
- Atomic/subatomic interactions evolves local states
- lacktriangledown Stable for "long" \Longrightarrow Enables later data recovery

Goal: Study information storage capacity while:

Distilling notion of storage from particular technology

- lacktriangledown Writing data \Longrightarrow Perturb local state of particles
- Atomic/subatomic interactions evolves local states
- ullet Stable for "long" \Longrightarrow Enables later data recovery

Goal: Study information storage capacity while:

- Distilling notion of storage from particular technology
- Capturing interparticle interaction and system's dynamics

- lacktriangledown Writing data \Longrightarrow Perturb local state of particles
- Atomic/subatomic interactions evolves local states
- lacktriangledown Stable for "long" \Longrightarrow Enables later data recovery

Goal: Study information storage capacity while:

- Distilling notion of storage from particular technology
- Capturing interparticle interaction and system's dynamics
- How much data can be stored and for how long?

Stochastic Ising Model:

• Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}$$

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}$$

Stochastic Ising Model:

- **Graph** $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}$$

• Glauber dynamics (discrete time): At config. $\sigma \in \Omega$

- **Graph** $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$
 - $\textbf{ 0} \ \, \mathsf{Select \ site \ for \ update} \ v \sim \mathsf{Unif}(\mathcal{V})$

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}$$

- **Glauber dynamics (discrete time):** At config. $\sigma \in \Omega$
 - ① Select site for update $v \sim \mathsf{Unif}(\mathcal{V})$

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$
 - ① Select site for update $v \sim \mathsf{Unif}(\mathcal{V})$

Warm (β small) \Longrightarrow Weak interactions

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq \{-1, +1\}^{\mathcal{V}}$ at inverse temp. β

$$\pi_{\beta}(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$
 - ① Select site for update $v \sim \mathsf{Unif}(\mathcal{V})$

Warm (β small) \Longrightarrow Weak interactions

Cold $(\beta \text{ large}) \implies \text{Strong interactions}$

Information Capacity:

Information Capacity:
$$I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t)$$

Information Capacity:
$$I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t)$$

• Joint distribution: $(X_0, X_t) \sim P_{X_0} P^t$, P - transition kernel.

Information Capacity:
$$I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t)$$

- **Joint distribution:** $(X_0, X_t) \sim P_{X_0} P^t$, P transition kernel.
- Desired operational meaning: size of maximal codebook.

Information Capacity:
$$I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t)$$

- Joint distribution: $(X_0, X_t) \sim P_{X_0} P^t$, P transition kernel.
- Desired operational meaning: size of maximal codebook.
- Graph: 2D $\sqrt{n} \times \sqrt{n}$ grid

Information Capacity:
$$I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t)$$

- Joint distribution: $(X_0, X_t) \sim P_{X_0} P^t$, P transition kernel.
- Desired operational meaning: size of maximal codebook.
- Graph: 2D $\sqrt{n} \times \sqrt{n}$ grid

$$\xrightarrow{\hspace*{1cm}} \text{Enc} \xrightarrow{\hspace*{1cm}} X_0 \xrightarrow{\hspace*{1cm}} \text{of Galuber } \\ \text{dynamics} \xrightarrow{\hspace*{1cm}} X_t \xrightarrow{\hspace*{1cm}} \text{Dec} \xrightarrow{\hspace*{1cm}} \hat{m} \xrightarrow{\hspace*{1cm}}$$

Information Capacity:
$$I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t)$$

- **Joint distribution:** $(X_0, X_t) \sim P_{X_0} P^t$, P transition kernel.
- Desired operational meaning: size of maximal codebook.
- Graph: 2D $\sqrt{n} \times \sqrt{n}$ grid
- **Warm:** n-fold DM BSC $\left(\frac{1}{2} + o(1)\right)$ after t = O(n).
- **Cold:** Can interactions (memory) help?

Majority Update:

 $\textbf{ § Select site for update } v \sim \mathsf{Unif}(\mathcal{V})$

Majority Update:

 $\textbf{ § Select site for update } v \sim \mathsf{Unif}(\mathcal{V})$

$$\text{ Refresh spin } \sigma(v) = \begin{cases} \text{spin of maj. ,} & \text{if } \exists \text{ maj.} \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}$$

- $\textbf{ 9} \ \, \mathsf{Select \ site \ for \ update} \ v \sim \mathsf{Unif}(\mathcal{V})$
- $\text{ Refresh spin } \sigma(v) = \begin{cases} \text{spin of maj. ,} & \text{if } \exists \text{ maj.} \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}$

- $\text{ Refresh spin } \sigma(v) = \begin{cases} \text{spin of maj. ,} & \text{if } \exists \text{ maj.} \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}$

- $\textbf{ 9} \ \, \mathsf{Select \ site \ for \ update} \ v \sim \mathsf{Unif}(\mathcal{V})$
- $\text{ Refresh spin } \sigma(v) = \begin{cases} \text{spin of maj. ,} & \text{if } \exists \text{ maj.} \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}$

Zero-Temperature Dynamics $(\beta \to \infty)$

Majority Update:

- $\text{ Refresh spin } \sigma(v) = \begin{cases} \text{spin of maj. ,} & \text{if } \exists \text{ maj.} \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}$

Zero-Temperature Dynamics $(\beta \to \infty)$

Majority Update:

- $\text{ Refresh spin } \sigma(v) = \begin{cases} \text{spin of maj. ,} & \text{if } \exists \text{ maj.} \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}$

Operation Domain coarsening: Monochrom. clusters shrink/grow/split/coalesce

Zero-Temperature Dynamics $(\beta \to \infty)$

Majority Update:

- $\text{ Refresh spin } \sigma(v) = \begin{cases} \text{spin of maj. ,} & \text{if } \exists \text{ maj.} \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}$

Operation Domain coarsening: Monochrom. clusters shrink/grow/split/coalesce

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

Time
$$t = 0$$
: $I_n(0) = n$

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

Time
$$t = 0$$
: $I_n(0) = n$

 \implies Uniform Upper Bound: $I_n(t) \leq n$, $\forall t$ (DPI)

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

Time
$$t = 0$$
: $I_n(0) = n$

$$\implies$$
 Uniform Upper Bound: $I_n(t) \leq n$, $\forall t$ (DPI)

Linear Time:
$$I_n(t) = \Theta(n)$$

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

Time
$$t = 0$$
: $I_n(0) = n$

$$\implies$$
 Uniform Upper Bound: $I_n(t) \leq n$, $\forall t$ (DPI)

<u>Linear Time:</u> $I_n(t) = \Theta(n)$

• Converse: See above.

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

Time
$$t = 0$$
: $I_n(0) = n$

 \implies Uniform Upper Bound: $I_n(t) \leq n$, $\forall t$ (DPI)

<u>Linear Time:</u> $I_n(t) = \Theta(n)$

- Converse: See above.
- Achievability: Linear codes (Gilbert-Varshamov)

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

Time
$$t = 0$$
: $I_n(0) = n$

 \implies Uniform Upper Bound: $I_n(t) \leq n$, $\forall t$ (DPI)

<u>Linear Time:</u> $I_n(t) = \Theta(n)$

- Converse: See above.
- Achievability: Linear codes (Gilbert-Varshamov)

Q1: What (if anything) can be stored for infinite time?

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} imes \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

• Stable Configurations: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

- Stable Configurations: $\sigma \in \Omega$ is *stable* if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

- Stable Configurations: $\sigma \in \Omega$ is *stable* if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- \$ # Stripes = $2^{\Theta(\sqrt{n})}$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

- Stable Configurations: $\sigma \in \Omega$ is *stable* if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- # # Stripes = $2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}(\{\text{Stripes}\})$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

- Stable Configurations: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- * # Stripes = $2^{\Theta(\sqrt{n})}$ & $X_0 \sim \mathsf{Unif}(\{\mathsf{Stripes}\}) \Longrightarrow I_n(\infty) = \Omega(\sqrt{n})$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- Stable Configurations: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\text{ \# Stripes} = 2^{\Theta(\sqrt{n})} \text{ \& } X_0 \sim \mathsf{Unif}\big(\{\mathsf{Stripes}\}\big) \Longrightarrow \ I_n(\infty) = \Omega(\sqrt{n})$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- Stable Configurations: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\text{ \# Stripes} = 2^{\Theta(\sqrt{n})} \ \& \quad X_0 \sim \mathsf{Unif}\big(\{\mathsf{Stripes}\}\big) \Longrightarrow \ I_n(\infty) = \Omega(\sqrt{n})$

Converse:

• Lemma: Zero-temp. SIM is absorb. MC & Stripes are absorb. set

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- Stable Configurations: $\sigma \in \Omega$ is *stable* if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\text{ \# Stripes} = 2^{\Theta(\sqrt{n})} \ \& \quad X_0 \sim \mathsf{Unif}\big(\{\mathsf{Stripes}\}\big) \Longrightarrow \ I_n(\infty) = \Omega(\sqrt{n})$

- Lemma: Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- Stable Configurations: $\sigma \in \Omega$ is *stable* if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\text{ \# Stripes} = 2^{\Theta(\sqrt{n})} \text{ \& } X_0 \sim \mathsf{Unif}\big(\{\mathsf{Stripes}\}\big) \Longrightarrow \ I_n(\infty) = \Omega(\sqrt{n})$

- Lemma: Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC

$$\Longrightarrow \lim_{t \to \infty} \mathbb{P}(X_t \in \{\mathsf{Stripes}\}) = 1$$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- Stable Configurations: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\text{ \# Stripes} = 2^{\Theta(\sqrt{n})} \text{ \& } X_0 \sim \mathsf{Unif}\big(\{\mathsf{Stripes}\}\big) \Longrightarrow \ I_n(\infty) = \Omega(\sqrt{n})$

- Lemma: Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC

$$\Longrightarrow \lim_{t \to \infty} \mathbb{P} \Big(X_t \in \{ \mathsf{Stripes} \} \Big) = 1 \implies I_n(\infty) = O(\sqrt{n})$$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- Stable Configurations: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- riangledark # Stripes $=2^{\Theta(\sqrt{n})}$ & $X_0 \sim \mathsf{Unif}ig(\{\mathsf{Stripes}\}ig) \Longrightarrow \ \emph{I}_{n}(\infty) = \Omega(\sqrt{n})$

- Lemma: Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC

$$\Longrightarrow \lim_{t \to \infty} \mathbb{P} \Big(X_t \in \{ \mathsf{Stripes} \} \Big) = 1 \implies I_n(\infty) = O(\sqrt{n})$$

Theorem (G.-Bresler-Polyanskiy'19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- Stable Configurations: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- # Stripes = $2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}(\{\text{Stripes}\}) \Longrightarrow I_n(\infty) = \Omega(\sqrt{n})$

Converse:

- **Lemma:** Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC

$$\Longrightarrow \lim_{t o\infty} \mathbb{P}ig(X_t \in \{\mathsf{Stripes}\}ig) = 1 \implies oldsymbol{I_n(\infty)} = oldsymbol{O}(\sqrt{n})$$

Q2: Can we do better than \sqrt{n} for finite superlinear t?

Theorem (G.-Bresler-Polyanskiy'19)

Let a(n) = o(n). Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Codebook Construction:

 \blacktriangleright Tile grid with mono. subsquares of side $\sqrt{a(n)}$

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- \blacktriangleright Tile grid with mono. subsquares of side $\sqrt{a(n)}$
- Separate by all-minus 2-strips

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- lacktriangle Tile grid with mono. subsquares of side $\sqrt{a(n)}$
- ► Separate by all-minus 2-strips
- $ightharpoonup X_0 \sim \mathsf{Unif}(\mathcal{C}), \ \mathcal{C} \triangleq \big\{ \sigma \ \mathsf{with this structure} \big\}$

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- lacktriangle Tile grid with mono. subsquares of side $\sqrt{a(n)}$
- ► Separate by all-minus 2-strips
- $ightharpoonup X_0 \sim \mathsf{Unif}(\mathcal{C}), \ \mathcal{C} \triangleq \{\sigma \text{ with this structure}\}$
- $K := \log |\mathcal{C}| = \Theta \left(\frac{n}{a(n)} \right)$

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Codebook Construction:

- lacktriangle Tile grid with mono. subsquares of side $\sqrt{a(n)}$
- ► Separate by all-minus 2-strips
- $ightharpoonup X_0 \sim \mathsf{Unif}(\mathcal{C}), \ \mathcal{C} \triangleq \big\{ \sigma \ \mathsf{with this structure} \big\}$
- $K := \log |\mathcal{C}| = \Theta \left(\frac{n}{a(n)} \right)$

• Continuous-Time: Updates according to i.i.d. Poiss(1/n) clocks.

$$I_n(t) \approx I_n^{(c)}((1+o(1))t), \quad t \sim \operatorname{suplog}(n)$$

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Codebook Construction:

- \blacktriangleright Tile grid with mono. subsquares of side $\sqrt{a(n)}$
- Separate by all-minus 2-strips
- $ightharpoonup X_0 \sim \mathsf{Unif}(\mathcal{C}), \ \mathcal{C} \triangleq \big\{ \sigma \ \mathsf{with this structure} \big\}$
- $ightharpoonup K := \log |\mathcal{C}| = \Theta\left(\frac{n}{a(n)}\right)$

• Continuous-Time: Updates according to i.i.d. Poiss(1/n) clocks.

$$I_n(t) \approx I_n^{(c)} ((1+o(1))t), \quad t \sim \operatorname{suplog}(n)$$

Non-interacting portions are independent.

Theorem (G.-Bresler-Polyanskiy'19)

Let a(n) = o(n). Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- Codebook Construction:
 - lacktriangle Tile grid with mono. subsquares of side $\sqrt{a(n)}$
 - Separate by all-minus 2-strips
 - $ightharpoonup X_0 \sim \mathsf{Unif}(\mathcal{C}), \ \ \mathcal{C} \triangleq \big\{ \sigma \ \text{with this structure} \big\}$
 - $K := \log |\mathcal{C}| = \Theta\left(\frac{n}{a(n)}\right)$

• Continuous-Time: Updates according to i.i.d. Poiss(1/n) clocks.

$$I_n(t) \approx I_n^{(c)}((1+o(1))t), \quad t \sim \operatorname{suplog}(n)$$

⇒ Non-interacting portions are independent.

Tensorization: $I_n^{(c)}(t) \geq K \cdot \max_{p_1} I\left(\left[X_0^{(c)}\right]_1; \left[X_t^{(c)}\right]_1\right)$

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

0

Subsquare:

Theorem (G.-Bresler-Polyanskiy'19)

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Subsquare:

Theorem (G.-Bresler-Polyanskiy'19)

Let a(n) = o(n). Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Subsquare:

Theorem (G.-Bresler-Polyanskiy'19)

Subsquare:

Let a(n) = o(n). Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Theorem (G.-Bresler-Polyanskiy'19)

Subsquare:

Let a(n) = o(n). Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

• Flip Probability: $q_t = \mathbb{P}\left(\tau \leq t\right), \ \tau = \inf\Big\{t: \ X_0^{(c)} = \boxplus \ \& \ X_t^{(c)} = \boxminus\Big\}.$

Theorem (G.-Bresler-Polyanskiy'19)

Subsquare:

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- Flip Probability: $q_t = \mathbb{P}\left(\tau \leq t\right), \ \tau = \inf\left\{t: \ X_0^{(c)} = \boxminus \ \& \ X_t^{(c)} = \boxminus\right\}.$
- Lifshitz Law [Lacoin et all 14]: $\exists c, \gamma > 0 : \mathbb{P} \Big(\tau \leq c \cdot a(n) n \Big) \leq e^{-\gamma \sqrt{a(n)}}$

Theorem (G.-Bresler-Polyanskiy'19)

Subsquare:

Let
$$a(n) = o(n)$$
. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- Flip Probability: $q_t = \mathbb{P}\left(\tau \leq t\right), \ \tau = \inf\left\{t: \ X_0^{(c)} = \boxminus \ \& \ X_t^{(c)} = \boxminus\right\}.$
- Lifshitz Law [Lacoin et al'14]: $\exists c, \gamma > 0 : \mathbb{P}\Big(\tau \leq c \cdot a(n)n\Big) \leq e^{-\gamma \sqrt{a(n)}}$ $\implies I_n^{(c)}(t) \geq K \cdot \mathsf{C}_{\mathsf{7-Channel}}(q_t)$

Theorem (G.-Bresler-Polyanskiy'19)

Let a(n) = o(n). Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- Flip Probability: $q_t = \mathbb{P}\left(\tau \leq t\right), \ \tau = \inf\left\{t: \ X_0^{(c)} = \boxminus \ \& \ X_t^{(c)} = \boxminus\right\}.$
- Lifshitz Law [Lacoin et al'14]: $\exists c, \gamma > 0 : \mathbb{P} \left(\tau \leq c \cdot a(n) n \right) \leq e^{-\gamma \sqrt{a(n)}}$

$$\implies I_n^{(c)}(t) \ge K \cdot \mathsf{C}_{\mathsf{Z-Channel}}(q_t)$$

$$\Longrightarrow I_n^{(c)}(c \cdot a(n) \cdot n) \ge C \cdot K = \Omega\left(\frac{n}{a(n)}\right)$$

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$
t = O(a(n)n)	$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$	$t = n \log n \Longrightarrow I_n(t) = \Omega\left(\frac{n}{\log n}\right)$ $t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
a(n) = o(n)		$t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$
t = O(a(n)n)	$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$	$t = n \log n \Longrightarrow I_n(t) = \Omega\left(\frac{n}{\log n}\right)$ $t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
a(n) = o(n)		$t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
$t \to \infty$	$I_n(t) = \Theta(\sqrt{n})$	Lower bound $\forall t$

We've Seen:

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$
t = O(a(n)n)	$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$	$t = n \log n \Longrightarrow I_n(t) = \Omega\left(\frac{n}{\log n}\right)$ $t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
a(n) = o(n)		$t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
$t \to \infty$	$I_n(t) = \Theta(\sqrt{n})$	Lower bound $\forall t$

We've Seen:

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$
t = O(a(n)n)	$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$	$t = n \log n \Longrightarrow I_n(t) = \Omega\left(\frac{n}{\log n}\right)$ $t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
a(n) = o(n)		$t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
$t \to \infty$	$I_n(t) = \Theta(\sqrt{n})$	Lower bound $\forall t$

Further Questions:

① Upper bounds better than n for $t < \infty$?

We've Seen:

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$
t = O(a(n)n)	$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$	$t = n \log n \Longrightarrow I_n(t) = \Omega\left(\frac{n}{\log n}\right)$ $t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
a(n) = o(n)		$t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
$t \to \infty$	$I_n(t) = \Theta(\sqrt{n})$	Lower bound $\forall t$

- **1** Upper bounds better than n for $t < \infty$?
 - $lackbox{
 ightharpoonup}$ Control absorption prob. $\max_{\sigma} \mathbb{P}_{\sigma} \big(X_t \text{ is absorbed} \, \big| \, X_0 = \sigma \big) \geq 1 \epsilon_{n,t}$

We've Seen:

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $orall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$
t = O(a(n)n)	$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$	$t = n \log n \Longrightarrow I_n(t) = \Omega\left(\frac{n}{\log n}\right)$ $t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
a(n) = o(n)		$t = n^{1+\alpha} \Longrightarrow I_n(t) = \Omega(n^{1-\alpha})$
$t \to \infty$	$I_n(t) = \Theta(\sqrt{n})$	Lower bound $\forall t$

- Upper bounds better than n for $t < \infty$?
 - $lackbox{
 ightharpoonup}$ Control absorption prob. $\max_{\sigma} \mathbb{P}_{\sigma} \big(X_t \text{ is absorbed} \big| X_0 = \sigma \big) \geq 1 \epsilon_{n,t}$
- Improved scheme for superlinear time?

We've Seen:

Time	Inf. Capacity	Comments
t = 0	$I_n(t) = n$	Upper bound $\forall t$
t = O(n)	$I_n(t) = \Theta(n)$	No loss for $t = lin(n)$
t = O(a(n)n)	$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$	$t = n \log n \Longrightarrow I_n(t) = \Omega\left(\frac{n}{\log n}\right)$
a(n) = o(n)		
$t \to \infty$	$I_n(t) = \Theta(\sqrt{n})$	Lower bound $\forall t$

- Upper bounds better than n for $t < \infty$?
 - lacktriangle Control absorption prob. $\max \mathbb{P}_{\sigma} \big(X_t \text{ is absorbed} \big| X_0 = \sigma \big) \geq 1 \epsilon_{n,t}$
- Improved scheme for superlinear time?
 - ▶ Nesting infinitely many sub-squares with vanishing growth rates.

• Hamiltonian:
$$\mathcal{H}(\sigma) = -\left(\sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h\sum_{v \in \mathcal{V}} \sigma(v)\right)$$

- \bullet Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum\limits_{\{u,v\}\in\mathcal{E}} \sigma(u)\sigma(v) + h\sum\limits_{v\in\mathcal{V}} \sigma(v)\right)$
- **Tie-Breaker:** Any $h > 0 \implies$ Tied neighborhood goes +1

- Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h\sum_{v \in \mathcal{V}} \sigma(v)\right)$
- ullet Tie-Breaker: Any $h>0 \implies$ Tied neighborhood goes +1
 - \implies All square-tilings with a(n) = const are stable.

Grid with External Field:

- Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum_{\{u,v\}\in\mathcal{E}} \sigma(u)\sigma(v) + h\sum_{v\in\mathcal{V}} \sigma(v)\right)$
- Tie-Breaker: Any $h > 0 \implies$ Tied neighborhood goes +1
 - \implies All square-tilings with a(n) = const are stable.

Theorem (G.-Bresler-Polyanskiy'19)

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n), \ \forall t$

Grid with External Field:

- Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum\limits_{\{u,v\}\in\mathcal{E}}\sigma(u)\sigma(v) + h\sum\limits_{v\in\mathcal{V}}\sigma(v)\right)$
- \bullet Tie-Breaker: Any $h>0 \implies$ Tied neighborhood goes +1
 - \implies All square-tilings with a(n)= const are stable.

Theorem (G.-Bresler-Polyanskiy'19)

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n), \ \forall t$

Honeycomb Lattice (no external field):

Grid with External Field:

- Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum\limits_{\{u,v\}\in\mathcal{E}}\sigma(u)\sigma(v) + h\sum\limits_{v\in\mathcal{V}}\sigma(v)\right)$
- ullet Tie-Breaker: Any $h>0 \implies$ Tied neighborhood goes +1
 - \implies All square-tilings with a(n)= const are stable.

Theorem (G.-Bresler-Polyanskiy'19)

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n), \ \forall t$

Honeycomb Lattice (no external field):

• $deg(v) = 3, \forall v \text{ in interior}$

Grid with External Field:

- Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum_{\{u,v\}\in\mathcal{E}} \sigma(u)\sigma(v) + h\sum_{v\in\mathcal{V}} \sigma(v)\right)$
- ullet Tie-Breaker: Any $h>0 \implies$ Tied neighborhood goes +1
 - \implies All square-tilings with a(n)= const are stable.

Theorem (G.-Bresler-Polyanskiy'19)

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n), \ \forall t$

Honeycomb Lattice (no external field):

- $deg(v) = 3, \ \forall v$ in interior
- $\implies |\mathsf{Stable} \; \mathsf{set}| = 2^{\Theta(n)}$

Grid with External Field:

- Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum\limits_{\{u,v\}\in\mathcal{E}}\sigma(u)\sigma(v) + h\sum\limits_{v\in\mathcal{V}}\sigma(v)\right)$
- Tie-Breaker: Any $h > 0 \implies$ Tied neighborhood goes +1
 - \implies All square-tilings with a(n) =const are stable.

Theorem (G.-Bresler-Polyanskiy'19)

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n), \ \forall t$

Honeycomb Lattice (no external field):

- \bullet deg(v) = 3, $\forall v$ in interior
 - \implies |Stable set| = $2^{\Theta(n)}$

Grid with External Field:

- Hamiltonian: $\mathcal{H}(\sigma) = -\left(\sum_{\{u,v\}\in\mathcal{E}} \sigma(u)\sigma(v) + h\sum_{v\in\mathcal{V}} \sigma(v)\right)$
- \bullet Tie-Breaker: Any $h>0 \implies$ Tied neighborhood goes +1
 - \implies All square-tilings with a(n)= const are stable.

Theorem (G.-Bresler-Polyanskiy'19)

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n), \ \forall t$

Honeycomb Lattice (no external field):

- deg(v) = 3, $\forall v$ in interior
 - \implies $|\mathsf{Stable} \ \mathsf{set}| = 2^{\Theta(n)}$

Theorem (G.-Bresler-Polyanskiy'19)

For zero-temp. SIM on Honeycomb lattice with n vertices: $I_n(t) = \Theta(n), \quad \forall t$

• A new model for information storage inside physical matter:

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies

- A new model for information storage inside physical matter:
 - ► Distilled from particular storage technologies
 - Accounts for interparticle interactions

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - ▶ Cold: Storing for superlinear times (even infinity) in zero-temp. SIM

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - ▶ Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
 - ▶ Grid with External Field: $I_n(t) = \Theta(n), \forall t$

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - ▶ Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
 - ▶ Grid with External Field: $I_n(t) = \Theta(n), \forall t$
 - ► Honeycomb Lattice: $I_n(t) = \Theta(n), \ \forall t$

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - ► Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
 - ▶ Grid with External Field: $I_n(t) = \Theta(n), \forall t$
 - ► Honeycomb Lattice: $I_n(t) = \Theta(n), \ \forall t$
 - \implies Favorable over grid without external field $(I_n(\infty) = \Theta(\sqrt{n}))$

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - ► Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
 - ▶ Grid with External Field: $I_n(t) = \Theta(n), \forall t$
 - ► Honeycomb Lattice: $I_n(t) = \Theta(n), \ \forall t$
 - \implies Favorable over grid without external field $\left(I_n(\infty) = \Theta(\sqrt{n})\right)$
- Low but positive temperature:

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
 - ▶ Grid with External Field: $I_n(t) = \Theta(n), \forall t$
 - ► Honeycomb Lattice: $I_n(t) = \Theta(n), \ \forall t$
 - \implies Favorable over grid without external field $(I_n(\infty) = \Theta(\sqrt{n}))$
- Low but positive temperature:
 - ▶ 1-bit upper bound on storage for exponential (in n) time

Summary

- A new model for information storage inside physical matter:
 - Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - Warm: Information capacity nullifies after linear time
 - Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
 - ▶ Grid with External Field: $I_n(t) = \Theta(n), \forall t$
 - ► Honeycomb Lattice: $I_n(t) = \Theta(n), \ \forall t$
 - \implies Favorable over grid without external field $\left(I_n(\infty) = \Theta(\sqrt{n})\right)$
- Low but positive temperature:
 - ▶ 1-bit upper bound on storage for exponential (in n) time
 - $ightharpoonup \sqrt{n}$ storage achievability for $e^{c\beta}$ time (store in stripes)

Summary

- A new model for information storage inside physical matter:
 - ▶ Distilled from particular storage technologies
 - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
 - ▶ Warm: Information capacity nullifies after linear time
 - ► Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
 - ▶ Grid with External Field: $I_n(t) = \Theta(n), \forall t$
 - ▶ Honeycomb Lattice: $I_n(t) = \Theta(n), \forall t$
 - \implies Favorable over grid without external field $(I_n(\infty) = \Theta(\sqrt{n}))$
- Low but positive temperature:
 - ightharpoonup 1-bit upper bound on storage for exponential (in n) time
 - $ightharpoonup \sqrt{n}$ storage achievability for $e^{c\beta}$ time (store in stripes)
- Available on arXiv: https://arxiv.org/abs/1805.03027

• Storage for indefinite time is impossible

• Storage for indefinite time is impossible

Q: How long can we hope for?

• Storage for indefinite time is impossible

Q: How long can we hope for?

Theorem (G.-Bresler-Polyanskiy'19)

Fix $\epsilon \in \left(0, \frac{1}{2}\right), \gamma > 0$. For β sufficiently large there exist c > 0 s.t.

$$I(X_0; X_t) \le \log 2 + \epsilon_n(\beta),$$

for all $t \geq n \cdot e^{c\beta n^{\frac{1}{4}+\epsilon}}$, where $X_0 \sim \pi$ and $\lim_{n \to \infty} \epsilon_n(\beta) = 0$.

• Storage for indefinite time is impossible

Q: How long can we hope for?

Theorem (G.-Bresler-Polyanskiy'19)

Fix $\epsilon \in \left(0, \frac{1}{2}\right), \gamma > 0$. For β sufficiently large there exist c > 0 s.t.

$$I(X_0; X_t) \le \log 2 + \epsilon_n(\beta),$$

for all $t \ge n \cdot e^{c\beta n^{\frac{1}{4} + \epsilon}}$, where $X_0 \sim \pi$ and $\lim_{n \to \infty} \epsilon_n(\beta) = 0$.

 \implies Storage beyond exponential time ≤ 1 bit $(X_0 \sim \text{Gibbs})$

- Storage for indefinite time is impossible
- Q: How long can we hope for?

Theorem (G.-Bresler-Polyanskiy'19)

Fix $\epsilon \in \left(0, \frac{1}{2}\right), \gamma > 0$. For β sufficiently large there exist c > 0 s.t.

$$I(X_0; X_t) \le \log 2 + \epsilon_n(\beta),$$

for all $t \geq n \cdot e^{c\beta n^{\frac{1}{4}+\epsilon}}$, where $X_0 \sim \pi$ and $\lim_{n \to \infty} \epsilon_n(\beta) = 0$.

- \implies Storage beyond exponential time ≤ 1 bit $(X_0 \sim \text{Gibbs})$
- \implies Long lasting X_0 is atypical w.r.t. Gibbs

ullet $\{X_t^\sigma\}_t$ is the chain initiated at $\sigma\in\Omega_n$

- $\{X_t^{\sigma}\}_t$ is the chain initiated at $\sigma \in \Omega_n$
- Couple $\{X_t^{\sigma}\}_t$, for all $\sigma \in \Omega_n$, via monotonic coupling

- ullet $\{X_t^{\sigma}\}_t$ is the chain initiated at $\sigma\in\Omega_n$
- Couple $\{X_t^{\sigma}\}_t$, for all $\sigma \in \Omega_n$, via monotonic coupling
- $m(\sigma)=rac{1}{n}\sum v\in \mathcal{V}_n\sigma(v)$ is magnetization ; $\sigma=\boxplus$ is all-plus state

- $\bullet \ \{X^{\sigma}_t\}_t$ is the chain initiated at $\sigma \in \Omega_n$
- Couple $\{X_t^{\sigma}\}_t$, for all $\sigma\in\Omega_n$, via monotonic coupling
- $m(\sigma)=\frac{1}{n}\sum v\in \mathcal{V}_n\sigma(v)$ is magnetization ; $\sigma=\boxplus$ is all-plus state

Proposition (Martinelli'94)

Let ϵ , γ be as before. For β sufficiently large there exist c>0 s.t.

$$\sum_{\substack{\sigma \in \Omega_n: \\ m(\sigma) > 0}} \pi(\sigma) \mathbb{P} \Big(X_t^{\sigma} \neq X_t^{\boxplus} \Big) \le e^{-\gamma \sqrt{n}}, \quad \forall t \ge n \cdot e^{c\beta n^{\frac{1}{4} + \epsilon}}$$

- $\bullet \ \{X_t^\sigma\}_t$ is the chain initiated at $\sigma \in \Omega_n$
- Couple $\{X_t^{\sigma}\}_t$, for all $\sigma\in\Omega_n$, via monotonic coupling
- $m(\sigma)=\frac{1}{n}\sum v\in \mathcal{V}_n\sigma(v)$ is <u>magnetization</u>; $\sigma=\boxplus$ is <u>all-plus state</u>

Proposition (Martinelli'94)

Let ϵ , γ be as before. For β sufficiently large there exist c>0 s.t.

$$\sum_{\substack{\sigma \in \Omega_n: \\ m(\sigma) > 0}} \pi(\sigma) \mathbb{P} \Big(X_t^{\sigma} \neq X_t^{\boxplus} \Big) \leq e^{-\gamma \sqrt{n}}, \quad \forall t \geq n \cdot e^{c\beta n^{\frac{1}{4} + \epsilon}}$$

$$\qquad \qquad \mathbf{I}(X_0;X_t) \leq H\Big(\mathrm{sign}\big(m(X_0)\big)\Big) + I\Big(X_0;X_t\Big|\mathrm{sign}\big(m(X_0)\big)\Big)$$

- \bullet $\{X_t^{\sigma}\}_t$ is the chain initiated at $\sigma \in \Omega_n$
- Couple $\{X_t^{\sigma}\}_t$, for all $\sigma \in \Omega_n$, via monotonic coupling
- $m(\sigma)=\frac{1}{n}\sum v\in \mathcal{V}_n\sigma(v)$ is magnetization ; $\sigma=\boxplus$ is all-plus state

Proposition (Martinelli'94)

Let ϵ , γ be as before. For β sufficiently large there exist c>0 s.t.

$$\sum_{\substack{\sigma \in \Omega_n: \\ m(\sigma) > 0}} \pi(\sigma) \mathbb{P}\left(X_t^{\sigma} \neq X_t^{\boxplus}\right) \le e^{-\gamma \sqrt{n}}, \quad \forall t \ge n \cdot e^{c\beta n^{\frac{1}{4} + \epsilon}}$$

12/12

ullet In low-temperature regime we may scale t with eta

- ullet In low-temperature regime we may scale t with eta
- Can store \sqrt{n} bits for $\exp(\beta)$ time!

- ullet In low-temperature regime we may scale t with eta
- Can store \sqrt{n} bits for $\exp(\beta)$ time!

Theorem (G.-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in (0,1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \le e^{c\beta}.$$

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp(\beta)$ time!

Theorem (G.-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in (0,1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \le e^{c\beta}.$$

- ullet In low-temperature regime we may scale t with eta
- Can store \sqrt{n} bits for $\exp(\beta)$ time!

Theorem (G.-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in (0,1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \le e^{c\beta}.$$

Storage Scheme:

• Codebook: Set of all 2-striped configurations

- ullet In low-temperature regime we may scale t with eta
- Can store \sqrt{n} bits for $\exp(\beta)$ time!

Theorem (G.-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in (0,1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \le e^{c\beta}.$$

- Codebook: Set of all 2-striped configurations
- # 2-Stripes: $2^{\Theta(\sqrt{n})}$

- ullet In low-temperature regime we may scale t with eta
- Can store \sqrt{n} bits for $\exp(\beta)$ time!

Theorem (G.-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in (0,1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \leq e^{c\beta}.$$

- Codebook: Set of all 2-striped configurations
- # 2-Stripes: $2^{\Theta(\sqrt{n})}$
- Input: $X_0 \sim \mathsf{Unif}(\{2\text{-Stripes}\})$

- ullet In low-temperature regime we may scale t with eta
- Can store \sqrt{n} bits for $\exp(\beta)$ time!

Theorem (G.-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in (0,1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \le e^{c\beta}.$$

- Codebook: Set of all 2-striped configurations
- # 2-Stripes: $2^{\Theta(\sqrt{n})}$
- Input: $X_0 \sim \mathsf{Unif}(\{2\mathsf{-Stripes}\})$
- Decoding: Majority decoding per stripe

• Denote: $t_f \triangleq e^{c\beta}$; $X_t^{(j)} \triangleq X_t^{(j)} \Big|_{\text{Stripe } j}$; $X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^j$

- Denote: $t_f \triangleq e^{c\beta}$; $X_t^{(j)} \triangleq X_t^{(j)} \Big|_{\text{Stripe } j}$; $X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^j$
- ullet Decoder: $\psi_j(X_t^{(j)})$ is majority decoder inside $X_t^{(j)}$

- Denote: $t_f \triangleq e^{c\beta}$; $X_t^{(j)} \triangleq X_t^{(j)} \Big|_{\text{Stripe } j}$; $X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^j$
- **Decoder:** $\psi_j(X_t^{(j)})$ is majority decoder inside $X_t^{(j)}$

$$\begin{split} I_n^{(\beta)}(t) &\geq \sum_j I\Big(X_0^{(j)}; X_{t_f} \Big| X_0^{[j-1]} \Big) \\ &\geq \sum_j I\Big(X_0^{(j)}; \psi_j(X_{t_f}) \Big| X_0^{[j-1]} \Big) \\ &\geq \Theta(\sqrt{n}) \cdot \mathsf{C}_{\mathsf{BSC}} \Big(\mathbb{P}(\mathsf{More than half stripe flipped}) \Big) \end{split}$$

- Denote: $t_f \triangleq e^{c\beta}$; $X_t^{(j)} \triangleq X_t^{(j)} \Big|_{\text{Stripe } j}$; $X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^j$
- ullet Decoder: $\psi_j(X_t^{(j)})$ is majority decoder inside $X_t^{(j)}$

$$\begin{split} I_n^{(\beta)}(t) &\geq \sum_j I\Big(X_0^{(j)}; X_{t_f} \Big| X_0^{[j-1]} \Big) \\ &\geq \sum_j I\Big(X_0^{(j)}; \psi_j(X_{t_f}) \Big| X_0^{[j-1]} \Big) \\ &\geq \Theta(\sqrt{n}) \cdot \mathsf{C}_{\mathsf{BSC}} \Big(\mathbb{P}(\mathsf{More than half stripe flipped}) \Big) \end{split}$$

 \implies Suffices to analyze $\mathbb{P}(More than half stripe flipped)$

Bottom 1-Stripe:

Bottom 1-Stripe:

• 2-stripe reduction by glueing horizontal spins

Bottom 1-Stripe:

- 2-stripe reduction by glueing horizontal spins
- Strategy:

Bottom 1-Stripe:

• 2-stripe reduction by glueing horizontal spins

Strategy:

▶ Bound $\mathbb{E}[N^{(+)}(t_f)]$, where $N^{(+)}(t_f) \triangleq \#$ pluses in bottom stripe of X_t

Bottom 1-Stripe:

• 2-stripe reduction by glueing horizontal spins

Strategy:

- ▶ Bound $\mathbb{E}\big[N^{(+)}(t_f)\big]$, where $N^{(+)}(t_f) \triangleq \#$ pluses in bottom stripe of X_t
- High probability claim via Chebyshev

Bottom 1-Stripe:

- 2-stripe reduction by glueing horizontal spins
- Strategy:
 - lacksquare Bound $\mathbb{E}ig[N^{(+)}(t_f)ig]$, where $N^{(+)}(t_f) riangleq \#$ pluses in bottom stripe of X_t
 - ► High probability claim via Chebyshev

Theorem (Goldfeld-Bresler-Polyanskiy'19)

Fix any $c,C\in(0,1).$ For β and n sufficiently large, we have

$$\mathbb{E}N^{(+)}(t) \ge C\sqrt{n}, \quad \forall t \le e^{c\beta}.$$

₱ Pluses may spread out above bottom stripe

ℜ Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

ℜ Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

Interleaved Dynamics: 2 types of flips

ℜ Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

Name : Interleaved Dynamics: 2 types of flips

► **Sprinkle:** Flip w/ all-plus horizontal neighbors

Relation Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

® Interleaved Dynamics: 2 types of flips

► **Sprinkle:** Flip w/ all-plus horizontal neighbors

₱ Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

Name : Interleaved Dynamics: 2 types of flips

► **Sprinkle:** Flip w/ all-plus horizontal neighbors

Relation Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

- **Name :** Interleaved Dynamics: 2 types of flips
 - ► **Sprinkle:** Flip w/ all-plus horizontal neighbors
 - **► Erosion:** Flip w/ at least one minus horizontal neighbor

Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
 - ► **Sprinkle:** Flip w/ all-plus horizontal neighbors
 - **► Erosion:** Flip w/ at least one minus horizontal neighbor

Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

- **® Interleaved Dynamics:** 2 types of flips
 - ► **Sprinkle:** Flip w/ all-plus horizontal neighbors
 - **► Erosion:** Flip w/ at least one minus horizontal neighbor

Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
 - ► **Sprinkle:** Flip w/ all-plus horizontal neighbors
 - ▶ **Erosion:** Flip w/ at least one minus horizontal neighbor

Expected Behavior:

ℜ Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
 - ► **Sprinkle:** Flip w/ all-plus horizontal neighbors
 - Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:

• Initially chain stays close to X_0 w/ occasional sprinkles

ℜ Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

- **® Interleaved Dynamics:** 2 types of flips
 - ► **Sprinkle:** Flip w/ all-plus horizontal neighbors
 - Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:

- **①** Initially chain stays close to X_0 w/ occasional sprinkles
- After sufficiently many sprinkle, drift driven by erosion

Rluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

► **Sprinkle:** Flip w/ all-plus horizontal neighbors

► **Erosion:** Flip w/ at least one minus horizontal neighbor

Expected Behavior:

- lacktriangle Initially chain stays close to X_0 w/ occasional sprinkles
- After sufficiently many sprinkle, drift driven by erosion
- \implies Dominate $\{X_t\}_t$ by a phase-separated dynamics

• Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- ullet $0 < t_1 < \ldots < t_k < t_f$ are the k clock rings (at v_1, \ldots, v_k) until t_f

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- ullet $0 < t_1 < \ldots < t_k < t_f$ are the k clock rings (at v_1, \ldots, v_k) until t_f
- \bullet Define new dynamics $\{\tilde{X}_t\}_{t\in[0,2t_f]}$ with first 2k clock rings and flips

$$\tau_{j} = \begin{cases} t_{j}, & j \in [k] \\ t_{j-k} + t_{f}, & j \in [k+1:2k] \end{cases}, \ u_{j} = \begin{cases} v_{j}, & j \in [k] \\ v_{j-k}, & j \in [k+1:2k] \end{cases}$$

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- ullet $0 < t_1 < \ldots < t_k < t_f$ are the k clock rings (at v_1, \ldots, v_k) until t_f
- ullet Define new dynamics $\{\tilde{X}_t\}_{t\in[0,2t_f]}$ with first 2k clock rings and flips

$$\tau_{j} = \begin{cases} t_{j}, & j \in [k] \\ t_{j-k} + t_{f}, & j \in [k+1:2k] \end{cases}, \quad u_{j} = \begin{cases} v_{j}, & j \in [k] \\ v_{j-k}, & j \in [k+1:2k] \end{cases}$$

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- ullet $0 < t_1 < \ldots < t_k < t_f$ are the k clock rings (at v_1, \ldots, v_k) until t_f
- \bullet Define new dynamics $\{\tilde{X}_t\}_{t\in[0,2t_f]}$ with first 2k clock rings and flips

$$\tau_{j} = \begin{cases} t_{j}, & j \in [k] \\ t_{j-k} + t_{f}, & j \in [k+1:2k] \end{cases}, \quad u_{j} = \begin{cases} v_{j}, & j \in [k] \\ v_{j-k}, & j \in [k+1:2k] \end{cases}$$

$$\begin{cases} X_{t} \}_{t \in [0,t_{f}]} \\ 0 & t_{1} \quad t_{2} \quad t_{3} \quad t_{4} t_{5} \quad t_{6} t_{7} t_{8} \quad t_{f} \end{cases}$$

$$0 \quad \tau_{1} \quad \tau_{2} \quad \tau_{3} \quad \tau_{4} \tau_{5} \quad \tau_{6} \tau_{7} \tau_{8} \quad t_{f} \quad \tau_{9} \quad \tau_{10} \quad \tau_{11} \quad \tau_{12} \tau_{13} \quad \tau_{14} \tau_{15} \tau_{16} \quad 2t_{f} \end{cases}$$

12/12

Blocking Rule:

$$\begin{split} & \big\{ \tilde{X}_t \big\}_{t \in \left[0, 2t_f\right]} \\ & \\ \downarrow & \\ 0 \quad \tau_1 \quad \tau_2 \qquad \tau_3 \qquad \tau_4 \tau_5 \quad \tau_6 \quad \tau_7 \tau_8 \qquad t_f \quad \tau_9 \quad \tau_{10} \qquad \tau_{11} \quad \tau_{12} \tau_{13} \, \tau_{14} \tau_{15} \, \tau_{16} \quad 2t_f \end{split}$$

Blocking Rule:

① For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)

$$\begin{cases} \tilde{X}_t _{t \in [0,2t_f]} \end{cases}$$

$$0 \quad \tau_1 \quad \tau_2 \quad \tau_3 \quad \tau_4 \tau_5 \quad \tau_6 \quad \tau_7 \tau_8 \quad t_f \quad \tau_9 \quad \tau_{10} \quad \tau_{11} \quad \tau_{12} \tau_{13} \, \tau_{14} \tau_{15} \, \tau_{16} \quad 2t_f$$

Blocking Rule:

- lacktriangle For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ② For $t_f \leq t \leq 2t_f$ allow only erosion flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)

$$\left\{ \tilde{X}_{t} \right\}_{t \in [0,2t_{f}]}$$

$$0 \quad \tau_{1} \quad \tau_{2} \quad \tau_{3} \quad \tau_{4}\tau_{5} \quad \tau_{6} \quad \tau_{7}\tau_{8} \quad t_{f} \quad \tau_{9} \quad \tau_{10} \quad \tau_{11} \quad \tau_{12}\tau_{13}\tau_{14}\tau_{15}\tau_{16} \quad 2t_{f}$$

Blocking Rule:

- lacktriangle For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ② For $t_f \leq t \leq 2t_f$ allow only erosion flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ${\mathfrak B}$ Adjust Poisson clock rates of $\{\tilde{X}_t\}_{t\in[0,2t_t]}$ to neighborhoods

$$\begin{split} & \big\{ \widetilde{X}_t \big\}_{t \in \left[0, 2t_f\right]} \\ \\ & 0 \quad \tau_1 \quad \tau_2 \qquad \tau_3 \qquad \tau_4 \tau_5 \quad \tau_6 \quad \tau_7 \tau_8 \qquad t_f \quad \tau_9 \quad \tau_{10} \qquad \tau_{11} \quad \tau_{12} \tau_{13} \quad \tau_{14} \tau_{15} \quad \tau_{16} \quad 2t_f \end{split}$$

Blocking Rule:

- lacksquare For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ② For $t_f \leq t \leq 2t_f$ allow only erosion flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ${\mathfrak B}$ Adjust Poisson clock rates of $\{\tilde X_t\}_{t\in[0,2t_f]}$ to neighborhoods

Observations:

$$\begin{split} \big\{\widetilde{X}_t\big\}_{t \in \left[0, 2t_f\right]} \\ \\ 0 \quad \tau_1 \quad \tau_2 \qquad \tau_3 \qquad \tau_4 \tau_5 \quad \tau_6 \quad \tau_{7} \tau_8 \qquad t_f \quad \tau_9 \quad \tau_{10} \qquad \tau_{11} \quad \tau_{12} \tau_{13} \quad \tau_{14} \tau_{15} \quad \tau_{16} \quad 2t_f \end{split}$$

Blocking Rule:

- lacktriangle For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ② For $t_f \leq t \leq 2t_f$ allow only erosion flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ${\mathfrak B}$ Adjust Poisson clock rates of $\{\tilde X_t\}_{t\in[0,2t_t]}$ to neighborhoods

Observations:

 \bullet Erosion flips in $\{X_t\}_{t\in[0,t_f]}$ \implies Erosion flips in $\{\tilde{X}_t\}_{t\in[t_f,2t_f]}$

$$\left\{ \tilde{X}_{t} \right\}_{t \in \left[0, 2t_{f}\right]}$$

$$0 \quad \tau_{1} \quad \tau_{2} \quad \tau_{3} \quad \tau_{4}\tau_{5} \quad \tau_{6} \ \tau_{7}\tau_{8} \quad t_{f} \quad \tau_{9} \quad \tau_{10} \quad \tau_{11} \quad \tau_{12}\tau_{13}\tau_{14}\tau_{15}\tau_{16} \quad 2t_{f}$$

Blocking Rule:

- lacktriangle For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ② For $t_f \leq t \leq 2t_f$ allow only erosion flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ${\mathfrak B}$ Adjust Poisson clock rates of $\{\tilde{X}_t\}_{t\in[0,2t_t]}$ to neighborhoods

Observations:

- ullet Erosion flips in $\{X_t\}_{t\in[0,t_f]}$ \Longrightarrow Erosion flips in $\{\tilde{X}_t\}_{t\in[t_f,2t_f]}$
- Erosion flip rates in $\{\tilde{X}_t\}_{t\in[t_f,2t_f]}$ are faster.

$$\left\{ \widetilde{X}_{t} \right\}_{t \in \left[0, 2t_{f}\right]}$$

$$0 \quad \tau_{1} \quad \tau_{2} \quad \tau_{3} \quad \tau_{4}\tau_{5} \quad \tau_{6} \ \tau_{7}\tau_{8} \quad t_{f} \quad \tau_{9} \quad \tau_{10} \quad \tau_{11} \quad \tau_{12}\tau_{13}\tau_{14}\tau_{15}\tau_{16} \quad 2t_{f}$$

Blocking Rule:

- For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ② For $t_f \leq t \leq 2t_f$ allow only erosion flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
- ${\mathfrak B}$ Adjust Poisson clock rates of $\{\tilde X_t\}_{t\in[0,2t_t]}$ to neighborhoods

Observations:

- Erosion flips in $\{X_t\}_{t\in[0,t_f]}$ \Longrightarrow Erosion flips in $\{\tilde{X}_t\}_{t\in[t_f,2t_f]}$
- Erosion flip rates in $\{\tilde{X}_t\}_{t\in[t_f,2t_f]}$ are faster.
- \Longrightarrow New dynamics is a speedup: $\mathbb{E}N^{(+)}(t_f) \geq \mathbb{E}\tilde{N}^{(+)}(2t_f)$

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) & how many of them?

• Approx. bottom stripe sites by i.i.d. $Exp(p_{\beta}), p_{\beta} \triangleq \mathbb{P}(Sprinkle)$

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

- Approx. bottom stripe sites by i.i.d. $\operatorname{Exp}(p_{\beta}), \ p_{\beta} \triangleq \mathbb{P}(\operatorname{Sprinkle})$
- ullet Approx. $\mathsf{L}_i=$ 'Length of Contig i' by $\mathsf{Geo}(p_\beta^{-1})$

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

- Approx. bottom stripe sites by i.i.d. $\operatorname{Exp}(p_{\beta}), \ p_{\beta} \triangleq \mathbb{P}(\operatorname{Sprinkle})$
- ullet Approx. $\mathsf{L}_i=$ 'Length of Contig i' by $\mathsf{Geo}(p_\beta^{-1}) \implies \mathbb{E}\mathsf{L}_i \gtrsim \ell_\beta riangleq rac{1}{p_\beta}$

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

- Approx. bottom stripe sites by i.i.d. $\operatorname{Exp}(p_{\beta}), \ p_{\beta} \triangleq \mathbb{P}(\operatorname{Sprinkle})$
- ullet Approx. $\mathsf{L}_i = \text{`Length of Contig i'} \ \text{by Geo}(p_{eta}^{-1}) \implies \mathbb{E} \mathsf{L}_i \gtrsim \ell_{eta} \triangleq \frac{1}{p_{eta}}$
- Show $\mathbb{E}[\mathsf{Number} \ \mathsf{of} \ \mathsf{contigs} \ \mathsf{of} \ \mathsf{this} \ \mathsf{length}] \gtrsim \frac{\sqrt{n}}{2-p_\beta}$

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

- ullet Approx. bottom stripe sites by i.i.d. $\operatorname{Exp}(p_{eta}),\ p_{eta} \triangleq \mathbb{P}(\operatorname{Sprinkle})$
- ullet Approx. $\mathsf{L}_i=$ 'Length of Contig i' by $\mathsf{Geo}(p_\beta^{-1}) \implies \mathbb{E}\mathsf{L}_i\gtrsim \ell_\beta riangleq rac{1}{p_\beta}$
- Show $\mathbb{E}[\mathsf{Number} \ \mathsf{of} \ \mathsf{contigs} \ \mathsf{of} \ \mathsf{this} \ \mathsf{length}] \gtrsim \frac{\sqrt{n}}{2-p_{eta}}$
- \implies Bound expected number of pluses as $\mathbb{E} \tilde{N}^{(+)}(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta} \mathbb{E} \mathsf{L}_i$

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- ullet Approx. bottom stripe sites by i.i.d. $\operatorname{Exp}(p_{eta}),\ p_{eta} riangleq \mathbb{P}(\operatorname{Sprinkle})$
- ullet Approx. $\mathsf{L}_i=$ 'Length of Contig i' by $\mathsf{Geo}(p_\beta^{-1}) \implies \mathbb{E}\mathsf{L}_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}$
- Show $\mathbb{E}[\mathsf{Number} \ \mathsf{of} \ \mathsf{contigs} \ \mathsf{of} \ \mathsf{this} \ \mathsf{length}] \gtrsim \frac{\sqrt{n}}{2-p_{\beta}}$
- \Longrightarrow Bound expected number of pluses as $\mathbb{E} \tilde{N}^{(+)}(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta} \mathbb{E} \mathsf{L}_i$

Erosion Analysis $(t_f, 2t_f]$: Contig eaten w/ speed $\phi_\beta \triangleq \frac{e^\beta}{e^\beta + e^{-\beta}}$ (2 sides)

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- ullet Approx. bottom stripe sites by i.i.d. $\operatorname{Exp}(p_{eta}),\ p_{eta} \triangleq \mathbb{P}(\operatorname{Sprinkle})$
- ullet Approx. $\mathsf{L}_i=$ 'Length of Contig i' by $\mathsf{Geo}(p_\beta^{-1}) \implies \mathbb{E}\mathsf{L}_i\gtrsim \ell_\beta riangleq rac{1}{p_\beta}$
- Show $\mathbb{E}[\mathsf{Number} \ \mathsf{of} \ \mathsf{contigs} \ \mathsf{of} \ \mathsf{this} \ \mathsf{length}] \gtrsim \frac{\sqrt{n}}{2-p_{\beta}}$
- \implies Bound expected number of pluses as $\mathbb{E} \tilde{N}^{(+)}(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta} \mathbb{E} \mathsf{L}_i$

Erosion Analysis $(t_f,2t_f]$: Contig eaten w/ speed $\phi_{\beta} \triangleq \frac{e^{\beta}}{e^{\beta}+e^{-\beta}}$ (2

sides Half contig eaten in
$$t_f$$
 time $\Big\} = \Big\{ \sum_{i=1}^{\ell_\beta/2} \mathsf{Exp}(\phi_\beta) \le t_f \Big\}$

Sprinkle Analysis $[0,t_f]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- ullet Approx. bottom stripe sites by i.i.d. $\operatorname{Exp}(p_{\beta}),\ p_{\beta} \triangleq \mathbb{P}(\operatorname{Sprinkle})$
- ullet Approx. $\mathsf{L}_i=$ 'Length of Contig i' by $\mathsf{Geo}(p_\beta^{-1}) \implies \mathbb{E}\mathsf{L}_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}$
- Show $\mathbb{E}[\mathsf{Number\ of\ contigs\ of\ this\ length}] \gtrsim \frac{\sqrt{n}}{2-n_\beta}$

$$\implies$$
 Bound expected number of pluses as $\mathbb{E} \tilde{N}^{(+)}(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta} \mathbb{E} \mathsf{L}_i$

Erosion Analysis $(t_f, 2t_f]$: Contig eaten w/ speed $\phi_\beta \triangleq \frac{e^\beta}{e^\beta + e^{-\beta}}$ (2

sides Half contig eaten in
$$t_f$$
 time $\Big\} = \Big\{ \sum_{i=1}^{\ell_\beta/2} \mathsf{Exp}(\phi_\beta) \le t_f \Big\}$

• Show latter probability is small and conclude proof