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Information Theoretic Security over Noisy Channels

Pros:
© Security versus computationally unlimited eavesdropper.

© No shared key - Use intrinsic randomness of a noisy channel.

Cons:
© Eve's channel assumed to be fully known & constant in time.

© Security metrics insufficient for (some) applications.

Our Goal: Stronger metric and remove “known channel” assumption.
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reX
@ Conditional Entropy: H(X|Y) = > Py(y)H(Px|y—y)-
yey

@ Mutual Information: [(X;Y)=H(X)—- H(X|Y)
=H(Y)-H({Y|X).

@ Relative Entropy: P and Q PMFs on X

D(PIQ) = 3 Pla)log o)

TEX ( )

* I(X;Y) = D(Pxy||PxPy) *
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Channel Coding Theorem

[Shannon 1948]

M X" Ve y
— Enc » Qy|x > Dec —M>
@ Message: M ~ Unif[1 : 2n%].
o (n,R)-Code: Enc: [1:2"] - x" ; Dec: Y" — [1:2"F].

o Channel: P(Y"=y"|X"=2") = H Qv x (yilzi) = Qi (y"]2").
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Channel Coding Theorem

[Shannon 1948]

M X" Ve y
— Enc » Qy|x > Dec —M>
@ Message: M ~ Unif[1 : 2n%].
o (n,R)-Code: Enc: [1:2"] - x" ; Dec: Y" — [1:2"F].

e Channel: P(Y"=y"|X"=2") = ']:[1 Qv x (yilz:) £ Qv x (y"2").

o Capacity: C £ sup {R‘ 3(n, R) — codes s.t. P(M # M) — O}.

Theorem (Shannon 1948)

The capacity of a DMC Qy|x is C = n%ax I(X;Y).
X
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Degraded [Wyner 1975], General [Csiszar-Korner 1978]
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Wiretap Channels and Security Metrics

Degraded [Wyner 1975], General [Csiszar-Korner 1978]

Y’n

1:2") ~ M n
Ul |~ M) Enc X Qy,z|x

z" Eve @

{Cn},cn - @ sequence of (n, R)-codes

o Weak-Secrecy: 11c (M;Z" — 0.

o Strong-Secrecy: I¢, (M;Z"™ 0.

n—oo

s A stronger secrecy metric is required for applications *
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Semantic Security

[Goldwasser-Micali 1982]
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Semantic Security

[Goldwasser-Micali 1982]

@ Test: For any Py learn about any f(M)

(n,R) Z" (n, R)
L |
Adversary = Simulator
R R
f() f(m)

@ Equivalence: [Bellare-Tessaro-Vardy 2012]
n}};}([cn(M;Z ) —=0

* A single code must work well for all message PMFs *
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Unif[1 : 2n5]

Code C,

U'rL

Soft-Covering - Setup

@ Random Codebook: C, = {U"(w)}

Qviu

vr~ PSS = QY

id

wNQ?]'

@ Induced Output Distribution: Codebook C,, = V" ~ P‘(,Cn")

P (v) = 327 QY  (vIu(w, ).

@ Target IID Distribution: Q7 marginal of Q}}Q%U.

* Goal: Choose R (codebook size) s.t. P‘(,Cn") ~Qy *
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A Stronger Soft-Covering Lemma

w un "o PO
———» Code C, » Qv ity @v
Unif[1 : 27

Lemma (Cuff 2015)

If R > Io(U; V) and |V| < oo, then there exists 1,72 > 0 s.t.

Pe, (D (PS|@v) > e_ml) <e ™

for n sufficiently large.
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Semantic Security for Wiretap Channels
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Semantic Security for Wiretap Channels

DM [Bellare-Tessaro-Vardy 2012], Gaussian [Tyagi-Vardy 2014]

Y’n

Dec —**—

-~ Enc Qy,z|x

z" Eve @

@ Security Metric: max Ie, (M; Z") —— 0.
M

n—oo

Csemantic = Cweak = maxx [I(U;Y) ~ 1(U; 2)]

U, X

@ Our Derivation: Union bound & Stronger soft-covering lemma.
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Semantic Security for Wiretap Channels - Derivation
n

. w=1
@ Wiretap Code:
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Wiretap Channels of Type Il - Preliminary

[Ozarow and Wyner 1984]

n N
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@ WTC | with Erasure DMC to Eve:

» Eavesdropper Observes =~ an symbols of X".

> Observed subset controlled by nature (i.i.d. process).

@ WTC II: Stronger Eve.

» Eve chooses which an symbols of X™ to observe.
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Wiretap Channels of Type |l - Definition

[Ozarow-Wyner 1984]

n N
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7, ¢S

o Eavesdropper: Can observe a subset S C [1 : n] of size p = |[an],
a € [0, 1], of transmitted symbols.

o Transmitted: ‘0‘ ‘1‘0‘1‘1‘1‘0‘1|0| n=10 a=0.63

o Observed: ]? ?|?|1|1|1|?|1|0|
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e, i¢S

o Ozarow-Wyner 1984: Noiseless main channel

» Rate equivocation region.
» Coset coding.

o Nafea-Yener 2015: Noisy main channel
» Built on coset code construction.

» Lower & upper bounds - Not match in general.
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Semantic Security: max Ic, (M;Z") —— 0.
Py,S: n—oo
|S|=p

Theorem (ZG-Cuff-Permuter 2015)

For any « € [0, 1]

Semantic

Clmantie(@) = Cliny(@) = max [I(U3Y) — al(U; X))

@ RHS is the secrecy-capacity of WTC | with erasure DMC to Eve.
@ Standard (erasure) wiretap code & Stronger tools for analysis.

@ Practical implementations of binary erasure wiretap codes exist.
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Finalization:

@ Semantic Security: Satisfied if R > oH (X))
@ Reliability: Successfully decode (M, W) if R+ R < I(X;Y).
o Rate Bound: R < I(X;Y) — aH(X) is achievable.

@ Channel Prefixing: Prefixing Q x|y achieves I(U;Y) — al(U; X).
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WTC Il SS-Capacity - Converse

‘SS—capacity WTC Il < Weak-secrecy-capacity WTC I‘

» WTC | with erasure DMC to Eve - Transition probability a.

@ Difficulty: Eve might observe more X;-s in WTC | than in WTC II.

@ Solution: Sanov's theorem & Continuity of mutual information.
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Arbitrarily Varying Wiretap Channels - Codes

o Deterministic Code: ¢, = (f, ¢) standard definition

» f - Stochastic encoder (local randomness).

» ¢ - Decoder.
o Correlated Random Code: C,, = (C,,, 'y, 1)

» Cp = {C"(V)}'yern - Family of deterministic codes ¢, (7) = (fy, ¢+)-
> un - PMF on T'), that chooses a code.

@ CR Code Interpretation:
> Legit parties choose code by a random experiment available to both.
» CR is an additional resource for reliable communication.

» CR should not be viewed as cryptographic key for secrecy.
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Arbitrarily Varying Wiretap Channels - CR Codes

For a CR code C,, = (Cp,, ', t1n):
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Arbitrarily Varying Wiretap Channels - CR Codes

For a CR code C,, = (Cp,, ', t1n):

@ Error Prob: grelggg >qer,, Bn(7)Pe, () <¢7(§/sn) + m‘M = m)
meM

» Maximal (states & messages) expected (codes) error probability.
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Arbitrarily Varying Wiretap Channels - CR Codes

For a CR code C,, = (Cp,, ', t1n):

@ Error Prob: max > e, Hn(7)Pe,(y) (%(st) # m‘M = m).

» Maximal (states & messages) expected (codes) error probability.

@ Semantic Security: max I
ses™ enly
PpreP(M)
7€l

(M ZE).

» Maximal (states & message PMFs & codes) information leakage.
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Type Constrained AVWTCs

s € T31(Qs)
L. .
AVWTC —5—~ Dec m
m e X" (20,0)

Cr(20,%, Qs) = max |1(U:Y) ~ I(U; Z|S))

Joint PMF: QSQU,XWY|X,SVZ|X,S-

o Reliability: Average channel Wy (y|z) = Y cs Qs(s)Ws(y|z).

@ Security: Eve who knows s as I(U; Z|S) = I(U; Z, S).
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» Need: Reliability over average channel Wq(y|z)= " Qs(s)Ws(y|x).
seS

* Wg is worse than any W, € 20 %

© Solution:
» Equivocation is continuous in types that are j-close to Qg.
» Continuity proof via novel distribution coupling argument.
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Type Constrained AVWTCs - General Results

o O-constrained AVWTC: Q C P(S) define S% = {s csn

= allowed state sequences are s € S§.

I/SEQ}

Q is convex and closed

Cr(20,90,0Q) > max | min I(U;Y)— max I(U;Z|S)
Qux | Q{VeQ QPeg

Joint PMFs: QY Qu x Wy x.sVizix.s, for j = 1,2.

|

v

Upper Bound
Q contains only rational PMFs

Cr(,9,09) < Qinf max [I(U; Y)-— I(U;Z\S)}

s€Q Qu,x

Joint PMF: QsQu,x Wy x,sVz|x,s-

o

Ziv Goldfeld Ben Gurion University
Semantic Security vs. Active Adversaries 33




Type Constrained AVWTCs - Concluding Remarks

@ Upgraded Security:

Ziv Goldfeld Ben Gurion University
Semantic Security vs. Active Adversaries 34




Type Constrained AVWTCs - Concluding Remarks

@ Upgraded Security:

» No assumption of a best channel to Eve.

Ziv Goldfeld Ben Gurion University
Semantic Security vs. Active Adversaries 34



Type Constrained AVWTCs - Concluding Remarks

@ Upgraded Security:

» No assumption of a best channel to Eve.

» SS versus Eve with access to the CR.

Ziv Goldfeld Ben Gurion University
Semantic Security vs. Active Adversaries 34



Type Constrained AVWTCs - Concluding Remarks

@ Upgraded Security:

» No assumption of a best channel to Eve.

» SS versus Eve with access to the CR.

@ Polynomial CR Code: DC-capacity > 0 = same rates achievable.

Ziv Goldfeld Ben Gurion University
Semantic Security vs. Active Adversaries 34



Type Constrained AVWTCs - Concluding Remarks

@ Upgraded Security:

» No assumption of a best channel to Eve.

» SS versus Eve with access to the CR.

@ Polynomial CR Code: DC-capacity > 0 = same rates achievable.

» Prefix index of selected code to transmitted sequence (vanising rate).

Ziv Goldfeld Ben Gurion University
Semantic Security vs. Active Adversaries 34



Type Constrained AVWTCs - Concluding Remarks

@ Upgraded Security:

» No assumption of a best channel to Eve.

» SS versus Eve with access to the CR.

@ Polynomial CR Code: DC-capacity > 0 = same rates achievable.
» Prefix index of selected code to transmitted sequence (vanising rate).
» Missing Piece: Dichotomy between DC-capacity> 0 and
DC-capacity= 0.
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» Equivalent to vanishing inf. leakage for all Py;.

@ Stronger Soft-Covering Lemma:
» Double-exponential decay of prob. of soft-covering not happening.
» Satisfy exponentially many soft-covering constraints.

@ Wiretap Channel Il: Noisy Main Channel
> Derivation of SS-capacity & Equality to weak-secrecy-capacity.
» Classic erasure wiretap codes achieve SS-capacity.

@ Type Constrained AVWTC:
» Single-letter characterization of type constrained AVWTC CR-capacity.

» General single-letter lower and upper bounds. Thank You!
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