Robust Distribution Estimation via Partial Optimal Transport

Ziv Goldfeld Cornell University

Sloan Nietert

Rachel Cummings

Soroosh Shafiee

Optimal Transport

From Wasserstein MDE to Generative Modeling

Minimum distance estimation: Estimate $\mu \in \mathcal{P}_1$ over $\mathcal{G} \subseteq \mathcal{P}_1$ via: $\hat{\mu} \in \underset{\nu \in \mathcal{G}}{argmin} W_1(\mu, \nu)$

Generative adversarial network: $\mathcal{G} = \{\nu_{\theta}\}_{\theta \in \Theta}, \ \nu_{\theta} = (g_{\theta})_{\sharp} \mathcal{N}(0, \mathbf{I}), \ w/ \ g_{\theta} \ \text{DNN}$

From Wasserstein MDE to Generative Modeling

Real-world data can be messy: Global (possibly adversarial) contamination by outliers

$$\tilde{\mu} = (1 - \epsilon)\mu + \epsilon \alpha$$

Real-world data can be messy: Global (possibly adversarial) contamination by outliers

$$\mu$$

$$\tilde{\mu} = (1 - \epsilon)\mu + \epsilon \alpha$$
Clean data: $X_1, \dots, X_n \sim \mu$
Observed data: $\tilde{X}_1, \dots, \tilde{X}_n$ s.t $\#\{i: \tilde{X}_n \neq X_i\} \leq n\epsilon$

Real-world data can be messy: Global (possibly adversarial) contamination by outliers

$$\tilde{\mu} \qquad \tilde{\mu} \qquad$$

Wasserstein distance is sensitive to outliers: Due to the strict marginal constraints

$$W_p(\mu, (1-\epsilon)\mu + \epsilon \delta_{\chi}) \xrightarrow[\|\chi\| \to \infty]{} \infty$$

Real-world data can be messy: Global (possibly adversarial) contamination but outliers

Question: How to learn well-performing models from contaminated data?

Robust Distribution Estimation under W_p

Clean distribution: $\mu \in \mathcal{G}$ (encoding, e.g., tail bounds)

Contamination model: Observe $\tilde{\mu}$ s.t. $\|\mu - \tilde{\mu}\|_{TV} \leq \epsilon$

Robust estimation: Given ϵ -corruption $\tilde{\mu}$, return est. $T(\tilde{\mu}) \in \mathcal{P}(\mathcal{X})$ achieving minimax risk

• **Population:**
$$R_p(\epsilon, \mathcal{G}) \coloneqq \inf_{T} \sup_{\mu \in \mathcal{G}} \sup_{\substack{\widetilde{\mu} \in \mathcal{P}(\mathcal{X}):\\ \|\mu - \widetilde{\mu}\|_{TV} \le \epsilon}} W_p(T(\widetilde{\mu}), \mu)$$

• Finite-sample: $R_{n,p}(\epsilon, \mathcal{G}) \coloneqq \inf_{T} \sup_{\mu \in \mathcal{G}} \sup_{\mathbb{P}_n \in \mathcal{A}_n(\mu, \epsilon)} \mathbb{E}_{\mathbb{P}_n} \left[W_p(T(\tilde{X}_1, \dots, \tilde{X}_n), \mu) \right]$ all corrupted data (joint) dist. under TV ϵ -corruption model

(* [Donoho-Liu '88]: TV MDE is near-minimax optimal in population limit; doesn't work in finite-sample

(**Zhu-Jiao-Steinhardt '22]**: Finite-sample mean & covariance robust estimation; not the distribution itself

Partial OT as an Outlier-Robust Distance

Partial Optimal Transport (Caffarelli-McCann '10)

V

$$W_p^{\epsilon}(\mu, \mathbf{v}) \coloneqq \left[\inf_{\pi \in \Pi_{\epsilon}(\mu, \mathbf{v})} \iint \|x - y\|^p d\pi(x, y) \right]^{1/p}$$

where $\Pi_{\epsilon}(\mu, \mathbf{v}) \coloneqq \{\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{X}) \colon \pi_1 \le \mu, \pi_2 \le \mathbf{v}, \pi(\mathcal{X} \times \mathcal{X}) = 1 - \epsilon \}$

Equivalent Formulations

Approximate Quasi-Metric

Theorem (Nietert-Cummings-G '23)

For any $\mu, \nu, \kappa \in \mathcal{P}(\mathcal{X})$ and $\epsilon, \delta \in [0,1]$:

a) $W_p^{\epsilon}(\mu,\nu) \ge 0$ with $W_p^{\epsilon}(\mu,\nu) = 0$ iff $\|\mu-\nu\|_{\mathrm{TV}} \le \epsilon$

b)
$$W_p^{\epsilon}(\mu, \nu) = W_p^{\epsilon}(\nu, \mu)$$

c)
$$W_p^{\epsilon+\delta}(\mu,\nu) \le W_p^{\epsilon}(\mu,\kappa) + W_p^{\delta}(\kappa,\nu)$$

Dual Formulation

Back to Robust Estimation: Population

Back to Robust Estimation: Finite-Sample

$$\mu \in \mathcal{G}$$

$$\widehat{\mu}_{n}$$

Robust Generative Modeling

Partial OT MDE:

$$\inf_{\theta} W_{1}^{\epsilon}(\mu, \nu_{\theta}) \approx \inf_{\theta} \sup_{\phi: f_{\phi} \in \operatorname{Lip}_{1}} \mathbb{E}_{\mu}[f_{\phi}] - \mathbb{E}_{\mathcal{N}(0,\mathbf{I})}[f_{\phi} \circ g_{\theta}] - 2\epsilon \|f_{\phi}\|_{\infty}$$

 \Rightarrow Matches W-GAN form up to $\|\cdot\|_{\infty}$ penalty

Implementation: 2 lines of code

Robust Generative Modeling: Empirical Results

Effect of Robustification

Comparisons

Ours

[Balaji et al. '20]

[Staerman et al. '21]

Control

Summary

Limitations of OT: Sensitivity to outliers

- Popular for applications
- Methods break down due to data poisoning
- **Partial OT:** Outlier-robust OT framework
 - Structural properties, including dual form
 - Partial OT MDE is minimax optimal robust dist. estimator
 - Enables learning well-performing models from contaminated data

Additional results: Polytime estimator, outlier-robust map estimation & stochastic optimization

[A] S. Nietert, R. Cummings, and Z. Goldfeld, "Robust estimation under the Wasserstein distance", ArXiv: 2302.01237
 [B] S. Nietert, Z. Goldfeld, and S. Shafieezadeh-Abadeh, "Robust estimation under local and global adversarial corruptions", COLT 2024, ArXiv:2406.06509

