The Semi-Deterministic BC with Cooperation and a Dual Source Coding Problem

Ziv Goldfeld, Haim H. Permuter and Gerhard Kramer

Ben Gurion University and Technische Universität München

June, 2014

Goal: Fundamental limits of compression and transmission:

Goal: Fundamental limits of compression and transmission:

Channel Coding:

Goal: Fundamental limits of compression and transmission:

Channel Coding:

Goal: Fundamental limits of compression and transmission:

Channel Coding:

What is the highest transmission rate?

Goal: Fundamental limits of compression and transmission:

Channel Coding:

What is the highest transmission rate?

Source Coding:

Goal: Fundamental limits of compression and transmission:

Channel Coding:

$$M$$
R Bits Encoder X^n
 $P_{Y|X}$
 Y^n
Decoder \hat{M}

What is the highest transmission rate?

Source Coding:

Encoder
$$T(X^n)$$
 Decoder \hat{X}^n

Goal: Fundamental limits of compression and transmission:

Channel Coding:

$$M$$
R Bits Encoder X^n
 $P_{Y|X}$
 Y^n
Decoder \hat{M}

What is the highest transmission rate?

Source Coding:

Encoder
$$T(X^n)$$
 Decoder \hat{X}^n

What is the lowest compression rate?

Mathematical Tools:

Mathematical Tools:

1 Information measures: $(X,Y) \sim P_{X,Y}$

Mathematical Tools:

- **1** Information measures: $(X,Y) \sim P_{X,Y}$
 - Entropy:

$$H(X) = -\mathbb{E}\Big[\log\big(P_X(X)\big)\Big] = -\sum_{x \in \mathcal{X}} P_X(x)\log\big(P_X(x)\big)$$
$$H(X|Y) = -\sum_{x \in \mathcal{X}} P_{X,Y}(x,y)\log\big(P_{X|Y}(x|y)\big)$$

Mathematical Tools:

- **1** Information measures: $(X,Y) \sim P_{X,Y}$
 - Entropy:

$$H(X) = -\mathbb{E}\Big[\log\big(P_X(X)\big)\Big] = -\sum_{x \in \mathcal{X}} P_X(x)\log\big(P_X(x)\big)$$
$$H(X|Y) = -\sum_{x \in \mathcal{X}} P_{X,Y}(x,y)\log\big(P_{X|Y}(x|y)\big)$$

• Mutual information:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X).$$

Mathematical Tools:

- **1** Information measures: $(X,Y) \sim P_{X,Y}$
 - Entropy:

$$H(X) = -\mathbb{E}\Big[\log\big(P_X(X)\big)\Big] = -\sum_{x \in \mathcal{X}} P_X(x)\log\big(P_X(x)\big)$$
$$H(X|Y) = -\sum_{x \in \mathcal{X}} P_{X,Y}(x,y)\log\big(P_{X|Y}(x|y)\big)$$

Mutual information:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X).$$

Method of types:

$$\mathcal{T}_{\epsilon}^{(n)}(P_X) = \left\{ x^n \in \mathcal{X}^n \mid |P_X(a) - \nu_{x^n}(a)| < \epsilon, \ \forall a \in \mathcal{X} \right\}.$$

Mathematical Tools:

- **1** Information measures: $(X,Y) \sim P_{X,Y}$
 - Entropy:

$$H(X) = -\mathbb{E}\Big[\log\big(P_X(X)\big)\Big] = -\sum_{x \in \mathcal{X}} P_X(x)\log\big(P_X(x)\big)$$
$$H(X|Y) = -\sum_{x \in \mathcal{X}} P_{X,Y}(x,y)\log\big(P_{X|Y}(x|y)\big)$$

Mutual information:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X).$$

Method of types:

$$\mathcal{T}_{\epsilon}^{(n)}(P_X) = \left\{ x^n \in \mathcal{X}^n \mid |P_X(a) - \nu_{x^n}(a)| < \epsilon, \ \forall a \in \mathcal{X} \right\}.$$

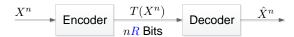
etc.

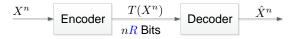
• Message: M is uniform over $\{1,\ldots,2^{nR}\}$.

- Message: M is uniform over $\{1, \dots, 2^{nR}\}$.
- Error Probability: $P_e^{(n)} \triangleq \mathbb{P}\Big[M \neq \hat{M}\Big] \to 0$ as $n \to \infty$.

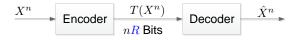
- Message: M is uniform over $\{1, \dots, 2^{nR}\}$.
- Error Probability: $P_e^{(n)} \triangleq \mathbb{P}\Big[M \neq \hat{M}\Big] \to 0$ as $n \to \infty$.
- Result:

$$C = \max_{P_Y} I(X; Y).$$





• Source sequences: X^n is i.i.d. $\sim P_X$.



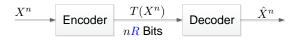
- Source sequences: X^n is i.i.d. $\sim P_X$.
- Result:

$$X^n$$
 Encoder $T(X^n)$ Decoder \hat{X}^n

- Source sequences: X^n is i.i.d. $\sim P_X$.
- Result:

1. Lossless:
$$\mathbb{P} \big[\hat{X}^n
eq X^n \big] o 0$$

$$R^\star = H(X).$$



- Source sequences: X^n is i.i.d. $\sim P_X$.
- Result:
 - 1. Lossless: $\mathbb{P} \big[\hat{X}^n \neq X^n \big] \to 0$

$$R^{\star} = H(X).$$

2. Coordination: $(X^n, \hat{X}^n) \in \mathcal{T}^{(n)}_{\epsilon} \left(P_X P^{\star}_{\hat{X}|X} \right)$

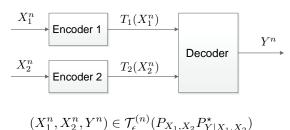
$$R^{\star} = I(X; \hat{X}).$$

Outline

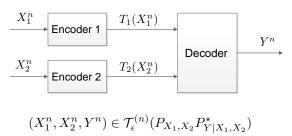
- Motivation and past work
- AK problem with one-sided encoder cooperation
- Semi-deterministic BC with one-sided decoder cooperation
- Duality
- Summary

 The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

 The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

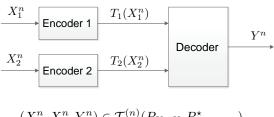


 The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].



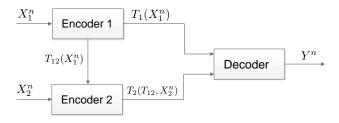
• Special case: Ahlswede-Körner problem (1975).

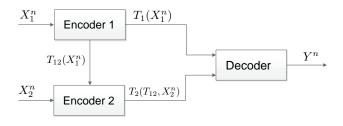
 The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].



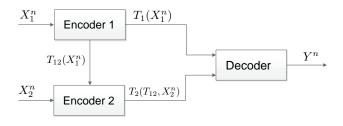
$$(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X_1, X_2} P_{Y|X_1, X_2}^{\star})$$

- Special case: Ahlswede-Körner problem (1975).
- Cooperation can dramatically boost performance of a network.

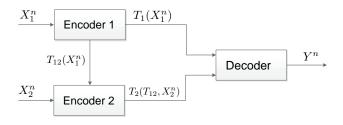




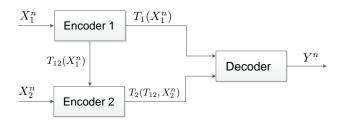
• Source sequences: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.



- Source sequences: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.
- Encoder cooperation: $T_{12} \in \{1, \dots, 2^{nR_{12}}\}.$



- Source sequences: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.
- Encoder cooperation: $T_{12} \in \{1, \dots, 2^{nR_{12}}\}.$
- ullet Encoder-Decoder communication: $T_i \in \{1,\dots,2^{nR_i}\},\,i=1,2.$



- Source sequences: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.
- Encoder cooperation: $T_{12} \in \{1, \dots, 2^{nR_{12}}\}$.
- ullet Encoder-Decoder communication: $T_i \in \{1,\dots,2^{nR_i}\},\,i=1,2.$
- Decoder output: $(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)} \big(f(Y), X_2, Y \big)$

AK Problem with Cooperation - Solution

Theorem (Coordination-Capacity Region)

For a desired coordination distribution $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ the coordination-capacity region is:

$$\mathcal{C}_{AK} = \bigcup \left\{ \begin{array}{c} (R_{12}, R_1, R_2) \in \mathbb{R}^3_+ : R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1 | V, U) \\ R_2 \geq I(U; X_2 | X_1, V) \\ R_1 + R_2 \geq H(X_1 | V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all joint distributions

 $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

AK Problem with Cooperation - Proof Outline

Achievability: Via the corner point of the region.

AK Problem with Cooperation - Proof Outline

Achievability: Via the corner point of the region.

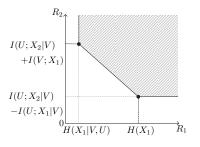


Figure : Region at $R_{12} = I(V; X_1) - I(V; X_2)$.

AK Problem with Cooperation - Proof Outline

Achievability: Via the corner point of the region.

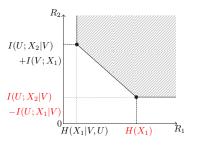


Figure : Region at $R_{12} = I(V; X_1) - I(V; X_2)$.

AK Problem with Cooperation - Proof Outline

Achievability: Via the corner point of the region.

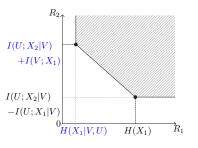
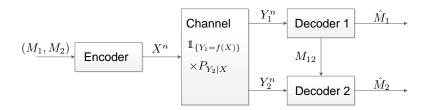
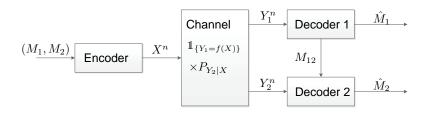


Figure : Region at $R_{12} = I(V; X_1) - I(V; X_2)$.

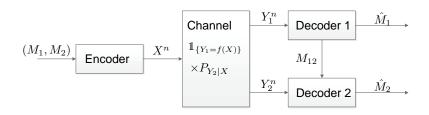
$$(I(V; X_1) - I(V; X_2), H(X_1), I(U; X_2|V) - I(U; X_1|V)).$$

$$I(V; X_1) - I(V; X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1).$$

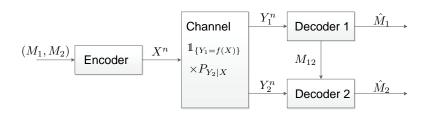




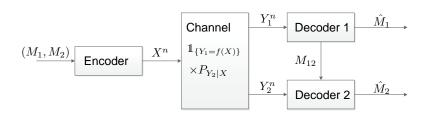
• Messages: (M_1, M_2) are independent and uniform over $\{1, \ldots, 2^{nR_1}\} \times \{1, \ldots, 2^{nR_2}\}.$



- **Messages:** (M_1, M_2) are independent and uniform over $\{1, \ldots, 2^{nR_1}\} \times \{1, \ldots, 2^{nR_2}\}.$
- Channel Decoder input: $Y_{1,i} = f(X_i)$ and $Y_{2,i} \sim P_{Y_2|X}$.



- **Messages:** (M_1, M_2) are independent and uniform over $\{1, \ldots, 2^{nR_1}\} \times \{1, \ldots, 2^{nR_2}\}.$
- Channel Decoder input: $Y_{1,i} = f(X_i)$ and $Y_{2,i} \sim P_{Y_2|X}$.
- Decoder cooperation: $M_{12}(Y_1^n) \in \{1, \dots, 2^{nR_{12}}\}.$



- **Messages:** (M_1, M_2) are independent and uniform over $\{1, \ldots, 2^{nR_1}\} \times \{1, \ldots, 2^{nR_2}\}.$
- Channel Decoder input: $Y_{1,i} = f(X_i)$ and $Y_{2,i} \sim P_{Y_2|X}$.
- Decoder cooperation: $M_{12}(Y_1^n) \in \{1, \dots, 2^{nR_{12}}\}.$
- Decoders' output: $\hat{M}_1(Y_1^n)$ and $\hat{M}_2(M_{12},Y_2^n)$; $P_e^{(n)} \triangleq \mathbb{P}\Big[(M_1,M_2) \neq (\hat{M}_1,\hat{M}_2)\Big] \rightarrow 0 \text{ as } n \rightarrow \infty.$

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$\mathcal{C}_{\textit{BC}} \! = \! \bigcup \! \left\{ \! \begin{array}{l} (R_{12}, R_1, R_2) \in \mathbb{R}^3_+ : R_{12} \geq I(V; Y_1) - I(V; Y_2) \\ R_1 \leq H(Y_1) \\ R_2 \leq I(V, U; Y_2) + R_{12} \\ R_1 + R_2 \leq H(Y_1|V, U) + I(U; Y_2|V) \\ + I(V; Y_1) \end{array} \right\}$$

where the union is over all joint distributions $P_{V,U,Y_1}P_{X|V,U,Y_1}P_{Y_2|X}$ with the property $Y_1=f(X)$.

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..." (C. E. Shannon, 1958)

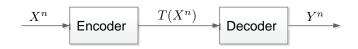
• The solutions problems are dual.

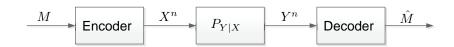
- The solutions problems are dual.
 - Information measures admit dual forms.

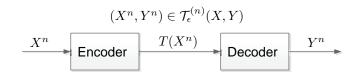
- The solutions problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.

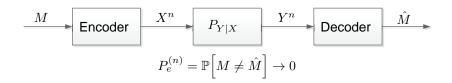
- The solutions problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.
- A formal proof of duality is still absent.

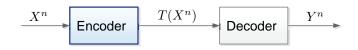
- The solutions problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.
- A formal proof of duality is still absent.
- Solving one problem provides valuable insight towards the solution of the other.

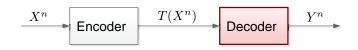


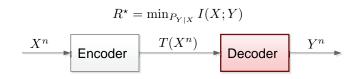


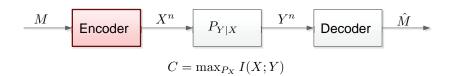




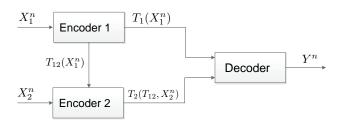


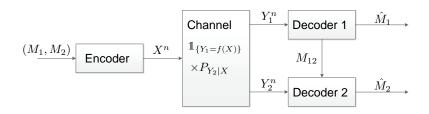




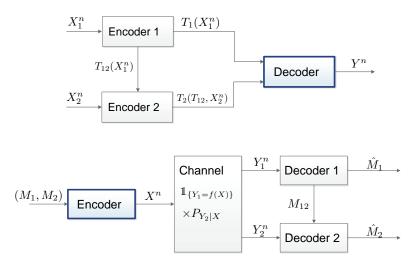


AK Problem vs. Semi-Deterministic BC:

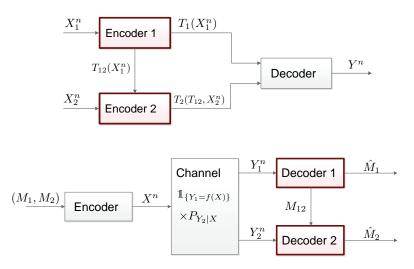




AK Problem vs. Semi-Deterministic BC:



AK Problem vs. Semi-Deterministic BC:



AK Problem vs. Semi-Deterministic BC:

Probabilistic relations are preserved:

AK Problem vs. Semi-Deterministic BC:

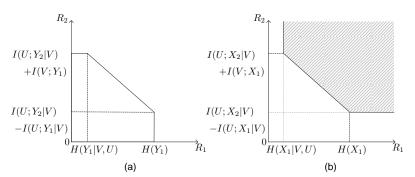
Probabilistic relations are preserved:

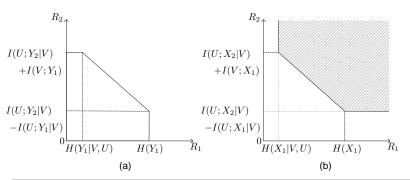
Semi-Deterministic BC

AK Problem

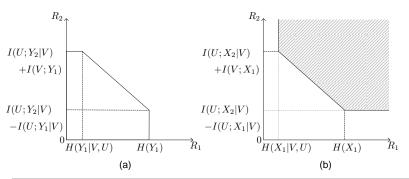
$$(X^{n}, Y_{1}^{n}, Y_{2}^{n}) \in \mathcal{T}_{\epsilon}^{(n)}(X, f(X), Y_{2}) \qquad \qquad (Y^{n}, X_{1}^{n}, X_{2}^{n}) \in \mathcal{T}_{\epsilon}^{(n)}(Y, f(Y), X_{2})$$

$$(P_{X} \mathbb{1}_{\{Y_{1} = f(X)\}} P_{Y_{2} \mid X}) \qquad \qquad (P_{Y} \mathbb{1}_{\{X_{1} = f(Y)\}} P_{X_{2} \mid Y}^{\star})$$

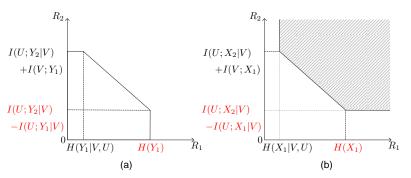




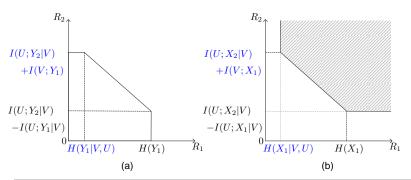
Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V; Y_1) - I(V; Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$	$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(Y_1 V,U), I(U;Y_2 V) + I(V;Y_1))$	$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$



Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V; Y_1) - I(V; Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$	$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(Y_1 V,U), I(U;Y_2 V) + I(V;Y_1))$	$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$



Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V; Y_1) - I(V; Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$	$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(Y_1 V,U), I(U;Y_2 V) + I(V;Y_1))$	$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$



Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V; Y_1) - I(V; Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$	$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(Y_1 V,U), I(U;Y_2 V) + I(V;Y_1))$	$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$

AK problem with cooperation.

- AK problem with cooperation.
- Semi-deterministic BC with cooperation.

- AK problem with cooperation.
- Semi-deterministic BC with cooperation.
- Duality:

- AK problem with cooperation.
- Semi-deterministic BC with cooperation.
- Duality:
 - Transformation principles.

- AK problem with cooperation.
- Semi-deterministic BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.

- AK problem with cooperation.
- Semi-deterministic BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.
- Full version available on ArXiV at http://arxiv.org/abs/1405.7812.

Summary

- AK problem with cooperation.
- Semi-deterministic BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.
- Full version available on ArXiV at http://arxiv.org/abs/1405.7812.

Thank you!

Achieving Corner Point 1:

$$(I(V;X_1|X_2), H(X_1), I(U;X_2|X_1,V)).$$

Achieving Corner Point 1:

$$(I(V; X_1|X_2), H(X_1), I(U; X_2|X_1, V)).$$

• Cooperation: Wyner-Ziv coding to convey V^n from Encoder 1 to Encoder 2.

Achieving Corner Point 1:

$$(I(V; X_1|X_2), \frac{H(X_1)}{I}, I(U; X_2|X_1, V)).$$

- Cooperation: Wyner-Ziv coding to convey V^n from Encoder 1 to Encoder 2.
- Encoder 1 to Decoder: Conveys X₁ⁿ to the decoder in a lossless manner.

Achieving Corner Point 1:

$$(I(V; X_1|X_2), H(X_1), I(U; X_2|X_1, V)).$$

- Cooperation: Wyner-Ziv coding to convey V^n from Encoder 1 to Encoder 2.
- Encoder 1 to Decoder: Conveys X₁ⁿ to the decoder in a lossless manner.
- Encoder 2 to Decoder: The decoder knows X_1^n and therefore V^n . Wyner-Ziv coding to convey U^n .

Achieving Corner Point 2:

$$(I(V; X_1|X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1)).$$

Achieving Corner Point 2:

$$(I(V; X_1|X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1)).$$

• Cooperation: Same.

Achieving Corner Point 2:

$$(I(V; X_1|X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1)).$$

- Cooperation: Same.
- Encoder 2 to Decoder: Knows V^n . Conveys the index of V^n and uses superposition coding to convey U^n .

Achieving Corner Point 2:

$$(I(V; X_1|X_2), \frac{H(X_1|V,U)}{I(U; X_2|V) + I(V; X_1)}).$$

- Cooperation: Same.
- Encoder 2 to Decoder: Knows V^n . Conveys the index of V^n and uses superposition coding to convey U^n .
- Encoder 1 to Decoder: The decoder knows (V^n, U^n) . Binning scheme to convey X_1^n in a lossless manner.

AK Problem with Cooperation - Proof Outline

Converse:

AK Problem with Cooperation - Proof Outline

Converse:

Standard techniques while defining

$$V_i = (T_{12}, X_1^{n \setminus i}, X_{2,i+1}^n),$$

 $U_i = T_2,$

for every $1 \le i \le n$.

AK Problem with Cooperation - Proof Outline

Converse:

Standard techniques while defining

$$V_i = (T_{12}, X_1^{n \setminus i}, X_{2,i+1}^n),$$

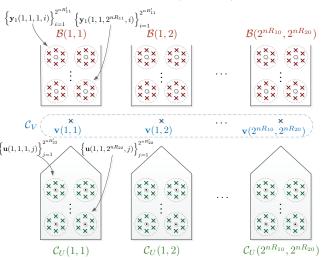
 $U_i = T_2,$

for every $1 \le i \le n$.

Time mixing properties.

Achievability: Split $M_i = (M_{i0}, M_{ii}), i = 1, 2.$ Code construction:

Achievability: Split $M_i = (M_{i0}, M_{ii})$, i = 1, 2. Code construction:



Legend:

o- Private message m_{11} o- Private message m_{22} x- v-codeword ($\sim P_V$)

x- y_1 -codeword ($\sim P_{Y_1}$)

x- u-codeword ($\sim P_{U/V}$)

Converse: Via a novel approach - Probabilistic construction of auxiliary random variables:

Converse: Via a novel approach - Probabilistic construction of auxiliary random variables:

• Upper bound on the achievable region.

Converse: Via a novel approach - Probabilistic construction of auxiliary random variables:

- Upper bound on the achievable region.
- The auxiliaries are constructed in a probabilistic manner as a function of the joint distribution induced by each codebook.

Converse: Via a novel approach - Probabilistic construction of auxiliary random variables:

- Upper bound on the achievable region.
- The auxiliaries are constructed in a probabilistic manner as a function of the joint distribution induced by each codebook.
- The upper bound is tightened to coincide with the achievable region.