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Pros:

1 Security versus computationally unlimited eavesdropper.

2 No shared key - Use intrinsic randomness of a noisy channel.

Cons:

1 Eve’s channel assumed to be fully known & constant in time.

2 Security metrics insufficient for (some) applications.

Our Goal: Stronger metric and remove “known channel” assumption.
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Wiretap Channels and Security Metrics
Degraded [Wyner 1975], General [Csiszár-Körner 1978]
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Semantic Security
[Goldwasser-Micali 1982]

Test: For any PM learn about any f(M)

Equivalence: [Bellare-Tessaro-Vardy 2012]

max

PM

ICn
(M ;Zn) −−−→

n→∞
0.

⋆ A single code must work well for all message PMFs ⋆
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Strong Soft-Covering Lemma

Lemma (ZG-Cuff-Permuter 2016)

If R̃ > IQ(U ;V ), then there exist γ1, γ2 > 0 s.t.
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New proof via concentration of measure (McDiarmid Theorem).
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[Ozarow-Wyner 1984]
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Ozarow-Wyner 1984: Noiseless main channel
◮ Rate equivocation region.
◮ Coset coding.

Nafea-Yener 2015: Noisy main channel
◮ Built on coset code construction.
◮ Lower & upper bounds - Not match in general.
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Type Constrained States: Allowed sn have empirical dist. ≈ QS:

Theorem (ZG-Cuff-Permuter 2016)

CSemantic = max
QU,X

[

I(U ; Y )− I(U ; Z|S)
]

Joint PMF: QSQU,XQY,Z|X,S .
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◮ Upper Bound: Distribution coupling & continuity arguments.
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Wiretap Channel II: Noisy Main Channel

◮ Derivation of SS-capacity & Equality to weak-secrecy-capacity.

◮ Classic erasure wiretap codes achieve SS-capacity.

◮ Generalization to arbitrarily varying wiretap channel.
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Theorem (Csiszár-Körner 1978)

CWTC = maxQU,X

[

I(U ; Y )− I(U ; Z)
]

Joint PMF: QU,XQY,Z|X



The Wiretap Channel - Encoding

Pad nR message bits with nR̃ random garbage bits.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries & WTCs with Random States 20



The Wiretap Channel - Encoding

Pad nR message bits with nR̃ random garbage bits.

00101101000110100010101100 01001011101010

Message Padding

Transmitted together in one block

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries & WTCs with Random States 20



The Wiretap Channel - Encoding

Pad nR message bits with nR̃ random garbage bits.

00101101000110100010101100 01001011101010

Message Padding

Transmitted together in one block

Random Codebook: (Message ,Padding) → Un ∼ Qn
U .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries & WTCs with Random States 20



The Wiretap Channel - Encoding

Pad nR message bits with nR̃ random garbage bits.

00101101000110100010101100 01001011101010

Message Padding

Transmitted together in one block

Random Codebook: (Message ,Padding) → Un ∼ Qn
U .

Reliability: R+ R̃ < I(U ;Y ).

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries & WTCs with Random States 20



The Wiretap Channel - Encoding

Pad nR message bits with nR̃ random garbage bits.

00101101000110100010101100 01001011101010

Message Padding

Transmitted together in one block

Random Codebook: (Message ,Padding) → Un ∼ Qn
U .

Reliability: R+ R̃ < I(U ;Y ).

Security: R̃ > I(U ;Z).

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries & WTCs with Random States 20
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Theorem (Gelfand-Pinsker 1980)

CGP = maxQU,X|S

[

I(U ; Y )− I(U ; S)
]

Joint PMF: QU,X|SQY |X,S
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Theorem (Chen-Han Vinck 2006)

CGP−WTC ≥ maxQU,X|S

[

I(U ; Y )−max
{

I(U ;Z), I(U ;S)
}

]

Joint PMF: QSQU,X|SQY,Z|X,S
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Key Extraction Scheme [Chia-El Gamal 2012]
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Theorem (Chia-El Gamal 2012)

CGP−WTC ≥ maxQU,X|S
min

{

H(S|U, Z), I(U ; Y |S)
}

Joint PMF: QSQU,X|SQY,Z|X,S

Better than previous scheme!
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Theorem (Chia-El Gamal 2012)

CGP−WTC ≥ maxQU,X|S
min

{

H(S|U, Z) +
[

I(U ; Y, S)− I(U ; Z)
]+

,
I(U ; Y |S)

}

Joint PMF: QSQU,X|SQY,Z|X,S
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⋆ Analysis: Likelihood Encoder & Superposition Strong SCL ⋆
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The Gelfand-Pinsker Wiretap Channel - Our Scheme

Theorem (ZG-Cuff-Permuter 2016)

CGP−WTC ≥ max
QU,V,X|S :

I(U ;Y )−I(U ;S)≥0

min

{

I(V ; Y |U)− I(V ; Z|U),

I(U, V ; Y )− I(U, V ; S)

}

Joint PMF: QSQU,V,X|SQY,Z|X,S .
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Wiretap Channels with Random States - Recap

Gelfand-Pinsker wiretap channel

◮ Combination of two fundamental problems.

Novel superposition coding scheme

◮ Upgrades previous results from weak-secrecy to semantic-security.

◮ Recovers best known rate when Sn known to Receiver [Chia-El Gamal].

◮ Strictly better than best known rate when Sn not known to Receiver.

Thank you!
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Outperforming Previous Schemes - An Example

M
Alice

X BSC(α) Y

Bob
M̂

Z = X
Eve

S BEC(σ)
S1

M

Our scheme is optimal: [Khisti-Diggavi-Wornell 2011]

C = max
QA|S

min
{

I(A; S1), 1− h(α)− I(A; S|S1)
}

◮ 1st auxiliary - key agreement over BEC.

◮ 2nd auxiliary - transmission over BSC (indep. of state and key).

Chen-Han Vinck scheme is suboptimal:

◮ Only one auxiliary - lacks flexibility to play both roles!
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WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I
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WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I

◮ WTC I with erasure DMC to Eve - Transition probability α.
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WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I

◮ WTC I with erasure DMC to Eve - Transition probability α.

Difficulty: Eve might observe more Xi-s in WTC I than in WTC II.
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WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I

◮ WTC I with erasure DMC to Eve - Transition probability α.

Difficulty: Eve might observe more Xi-s in WTC I than in WTC II.

Solution: Sanov’s theorem & Continuity of mutual information.
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