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1 Introduction

Modern communication systems usually present an architectural separation between

error correction and data encryption. The former is typically realized at the physical

layer by transforming the noisy communication channel into a reliable “bit pipe”.

The data encryption is implemented on top of that by applying cryptographic prin-

ciples. The cryptographic approach relies on restricting the computational power of

the eavesdropper. The looming prospect of quantum computers (QCs) (some com-

panies have recently reported a working prototype of a QC with over than 1000

qbits [15, 16]), however, would boost computational abilities, rendering some crit-

ical cryptosystems insecure and weakening others.1 Post-QC cryptography offers

partial solutions that rely on larger keys, but even now considerable efforts are made

to save this expensive resource.

Physical layer security (PLS) [5,18,28], rooted in information-theoretic (IT) prin-

ciples, is an alternative approach to provably secure communication that dates back

to Wyner’s celebrated 1975 paper on the wiretap channel (WTC) [26]. By harnessing

randomness from the noisy communication channel and combining it with proper

physical layer coding, PLS guarantees protection against computationally-unlimited

eavesdroppers with no requirement that the legitimate parties share a secret key (SK)

in advance. The eavesdroppers computational abilities are of no consequence here

since the signal he/she observes from the channel carries only negligible information

about the secret data.

1.1 Background

Two fundamental questions in PLS are those of the best achievable transmission rate

of a secret message (SM) over a noisy channel, and the highest attainable SK rate

that distributed parties can agree upon.

1.1.1 Secret-Message Transmission

The base model for SM transmission is Wyner’s WTC [26], where two legitimate

parties communicate over a noisy channel in the presence of an untrusted eaves-

dropper. A full characterization of the secrecy capacity of WTCs that are degraded

1 More specifically, asymmetric ciphers that rely on the hardness of integer factorization or discrete

logarithms can be completely broken using QCs via Shor’s algorithm (or a variant thereof) [4,22].

Symmetric encryption, on the other hand, would be weakened by QC attacks but could regain its

strength by increasing the size of the key [20]. This essentially follows since a QC can search

through a space of size 2n in time 2
n
2 , so by doubling the size of the key a symmetric cryptosystem

would offer the same protection versus a QC attack, as the original system did versus a classic

attack.
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in favor of the legitimate parties was derived in [26]. The solution was extended to

the not necessarily degraded case by Csiszár and Körner [7].

A common method used in IT security proofs that dates back to the early days

of Wyner, Csiszàr and Körner, relies on evaluating rather complicated equivoca-

tion terms. Recently, however, distribution approximation arguments emerged as a

tool of choice for proving security. The core result on which this approach relies is

called the soft-covering lemma (SCL), which originated from another 1975 paper

by Wyner [25]. Interestingly, while both the WTC and the SCL appear in two works

by Wyner from the same year, he did not seem to make a connection between the

two results (although he must have been aware of a relation).

The SCL states the distribution induced by randomly selecting a codeword from

an appropriately chosen codebook and passing it through a DM channel will be

asymptotically indistinguishable from the distribution of random noise. Wyner’s

original result was sharpened throughout the years to hold under stricter proxim-

ity measure between distributions [10, 11, 13, 14]. Based on these sharper versions,

one can make the channel output observed by the eavesdropper in the WTC look like

noise and, in particular, be approximately independent of the confidential data. More

specifically, a wiretap code assigns a sub-codebook that satisfies the soft-covering

phenomenon to each confidential message. To transmit a certain secret message, a

codeword from its associated sub-codebook is randomly and uniformly chosen and

is fed into the WTC. Consequently, the distribution induced on the output sequence

observed by the eavesdropper given each confidential message is indistinguishable

from the distribution of random noise. This, in particular, implies that the eaves-

dropper’s observation is asymptotically independent of the confidential data, which

implies security. The notion of soft-covering is key for deriving the results of this

work.

1.1.2 Secret-Key Agreement

The study of SK agreement was pioneered by Maurer [19], and independently by

Ahlswede and Csiszár [1], who studied the achievable SK rates based on correlated

observations at the terminals who may communicate via a noiseless and rate unlim-

ited public link. A characterization of the SK capacity was found in [1] for the case

where only one-way public communication is allowed. If the eavesdropper does

not observe a correlated source, thus having access only to the public communica-

tion, the optimal SK agreement protocol uses Slepian-Wolf coding [23] for lossless

reconstruction with side information. When the eavesdropper also observes a corre-

lated source, a superposition coding scheme combined with Wyner-Ziv coding [27]

is needed to achieve optimality. The inner layer of the code carries no secret infor-

mation. It is designed to glut the eavesdropper with redundant information, thereby

wasting his/hers channel resources. The confidential data is encoded in the outer

layer of the superposition code and is protected by virtue of random binning. A

generalization to the case where the public link is of finite capacity is due to Csiszár

and Narayan [8]. If the encoder controls its source (rather than just observing it), this
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source becomes a channel input and the setup evolves to a WTC. This is a special

case of the so called SK channel-type model that was also studied in [1].

1.2 Model and Contributions

A more general framework to consider is a state-dependent (SD) WTC with non-

causal encoder channel state information (CSI) (sometimes referred to as the Gelfand

and Pinsker (GP) WTC, due to the study of the corresponding point-to-point sce-

nario by the aforementioned authors [9]). The dependence of the channel on the

state accounts for the possible availability of correlated sources observations at the

terminals.

The similarity between the SM transmission and the SK agreement tasks makes

their integration in a single model only natural. Adhering to the most general frame-

work, we study the trade-off between the SM-SK rates that are simultaneously

achievable over a SD-WTC with non-causal encoder CSI. The scenario where there

is only a SM was considered in [6], where an achievable SM rate formula was es-

tablished. This result was recently improved upon in [12] based on a novel superpo-

sition coding scheme. SK agreement over the GP-WTC was the focus of [17], and

more recently was also studied in [2] (see also references therein). The combined

model was considered by Prabhakaran et al. [21], who derived a benchmark inner

bound on the SK-SM capacity region. The result from [21] was shown to be opti-

mal for various special cases. We propose a novel superposition coding scheme for

the combined model that not only subsumes [21] as a special case, but also cap-

tures [2, 6, 12, 17] and, to the best of our knowledge, all other existing achievability

results for SM transmission, SK agreement or both.

Our coding scheme uses an over-populated superposition codebook that encodes

the entire confidential message in its outer layer. Using the redundancies in the inner

and outer layers, the transmission is correlated with the state sequence by means of

the likelihood encoder [24]. Although the redundancy indices are chosen as part of

the encoding process (rather than by the user), via the strong soft-covering lemma

(SCL) for superposing codes [12, Lemma 1], we show that their true distribution is

well approximated by a uniform distribution. Consequently, as long as a certain re-

dundancy index is kept secret (along with the confidential message) from the eaves-

dropper, it may be declared as a SK. The security analysis is based on constructing

the inner codebook such that it is better observable by the eavesdropper, making the

inner layer index decodable by him. This enhances the secrecy resources that the

legitimate parties can extract from the outer layer, which they use to secure the SM

and part of the redundancy index of the outer layer. The encoder and decoder then

declare the secured redundancy index as the SK. The agreed SK may be used to

further boost the SM rate by encrypting part of the message using a one-time pad

and transmitting it over the inner (unsecured) layer.

Our results are derived under the strict metric of semantic-security (SS). The

SS criterion is a cryptographic gold standard that was adapted to the information-
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theoretic framework (of computationally unbounded adversaries) in [3]. As was

shown in [3], SS is equivalent to a negligible mutual information (MI) between the

confidential information (in our case, the SM-SK pair) and the eavesdropper’s obser-

vations for all message-key distributions. The proof of SS relies on the strong SCL

for superposition [12, Lemma 1] and the heterogeneous SCL [10, Lemma 1]. Since

most of the secrecy results mentioned above were derived under the weak-secrecy

metric (i.e., a vanishing normalized MI with respect to a uniformly distributed

message-key pair), our achievability outperforms the schemes from [2, 6, 17, 21]

for the SD-WTC with non-causal encoder CSI not only in terms of the achievable

rate pairs, but also in the upgraded sense of security it provides.

1.3 Organization

This paper is organized as follows. Section 2 establishes notation and preliminary

definitions. Section 3 describes the SD-WTC setting and states an inner bound on

SM-SK optimal trade-off region. In Section 4 we discuss past results that are cap-

tured within our framework. An outline of the proof of our main result is the content

of Section 5. Finally, Section 6 summarizes the main achievements and insights of

this work.

2 Preliminaries

We use the following notations. As customary N is the set of natural numbers (which

does not include 0), while R are the reals. We further define R+ = {x ∈ R|x ≥ 0}.

Given two real numbers a,b, we denote by [a:b] the set of integers
{

n∈N
∣

∣⌈a⌉≤ n≤
⌊b⌋

}

. Calligraphic letters denote sets, e.g., X , while |X | stands for its cardinality.

X n denotes the n-fold Cartesian product of X . An element of X n is denoted by

xn = (x1,x2, . . . ,xn); whenever the dimension n is clear from the context, vectors (or

sequences) are denoted by boldface letters, e.g., x.

Let
(

X ,F ,P
)

be a probability space, where X is the sample space, F is the

σ -algebra and P is the probability measure. Random variables over
(

X ,F ,P
)

are

denoted by uppercase letters, e.g., X , with conventions for random vectors similar

to those for deterministic sequences. The probability of an event A ∈ F is denoted

by P(A), while P(A
∣

∣B ) denotes conditional probability of A given B. We use 1A

to denote the indicator function of A ∈ F . The set of all probability mass functions

(PMFs) on a finite set X is denoted by P(X ). PMFs are denoted by the letters

such as p or q, with a subscript that identifies the random variable and its possible

conditioning. For example, for a two discrete correlated random variables X and Y

over the same probability space, we use pX , pX ,Y and pX |Y to denote, respectively,

the marginal PMF of X , the joint PMF of (X ,Y ) and the conditional PMF of X

given Y . In particular, pX |Y represents the stochastic matrix whose elements are
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Fig. 1: The state-dependent wiretap channel with non-casual encoder channel state information.

given by pX |Y (x|y) = P
(

X = x|Y = y
)

. Expressions such as pX ,Y = pX pY |X are to

be understood to hold pointwise, i.e., pX ,Y (x,y) = pX (x)pY |X (y|x), for all (x,y) ∈
X ×Y . Accordingly, when three random variables X , Y and Z satisfy pX |Y,Z = pX |Y ,

they form a Markov chain, which we denote by X −Y −Z. We omit subscripts if the

arguments of a PMF are lowercase versions of the random variables.

For a sequence of random variable Xn, if the entries of Xn are drawn in an iden-

tically and independently distributed (i.i.d.) manner according to pX , then for every

x ∈ X n we have pXn(x) = ∏n
i=1 pX (xi) and we write pXn(x) = pn

X (x). Similarly, if

for every (x,y) ∈ X n ×Yn we have pY n|Xn(y|x) = ∏n
i=1 pY |X (yi|xi), then we write

pY n|Xn(y|x) = pn
Y |X (y|x). The conditional product PMF pn

Y |X given a specific se-

quence x ∈ X n is denoted by pn
Y |X=x

.

The empirical PMF νx of a sequence x ∈ X n is νx(x) ,
N(x|x)

n
, where N(x|x) =

∑n
i=11{xi=x}. We use T n

ε (pX ) to denote the set of letter-typical sequences of length

n with respect to the PMF pX and the non-negative number ε , i.e., we have

T n
ε (pX ) =

{

x ∈ X n
∣

∣

∣

∣

∣νx(x)− pX (x)
∣

∣≤ ε pX (x), ∀x ∈ X
}

. (1)

Definition 1 (Total Variation). Let (X ,F) be a measurable space and p and q be

two probability measures on F . The total variation between p and q is ||p−q||TV =
supA∈F

∣

∣p(A)− q(A)
∣

∣. If the sample space X is countable, the the total variation

reduces to ||p−q||TV = 1
2 ∑x∈X

∣

∣p({x})−q({x})
∣

∣.

3 SM-SK Trade-off over Wiretap Channels with Non-Causal

Encoder CSI

We study the SD-WTC with non-causal encoder CSI, for which we establish a novel

achievable region of semantically-secured message-key pairs that subsumes the pre-

viously best known coding schemes for this scenario.
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3.1 Problem Setup

Let S, X , Y and Z be finite sets. The
(

S,X ,Y,Z,WS,WY,Z|X ,S

)

discrete and mem-

oryless SD-WTC with non-causal encoder CSI is illustrated in Fig. 1. A state se-

quence s ∈ Sn is generated in an i.i.d. manner according to WS and is revealed in a

non-causal fashion to the sender, who chooses a message m from the set
[

1 : 2nRM
]

.

The sender then maps the observed state sequence s and the chosen message m

into a channel input sequence x ∈ X n and a key index k ∈
[

1 : 2nRK
]

(the mapping

may be random). The sequence x is transmitted over the SD-WTC with transition

probability WY,Z|X ,S. The output sequences y ∈ Yn and z ∈ Zn are observed by the

receiver and the eavesdropper, respectively. Based on y, the receiver produces the

estimates pair (m̂, k̂) of (m,k). The eavesdropper tries to glean whatever it can about

the message and the generated key from z.

Remark 1 (Most General Model). Before rigorously defining the setup and stating

the result, we note that the considered model is the most general instance of a SD-

WTC with non-causal CSI known at some or all of the terminals. The broadest

model one may consider is when the SD-WTC WỸ ,Z̃|X ,S1,S2,S3
is driven by a triple

of correlated state random variables (S1,S2,S3) ∼ WS1,S2,S3
, where S1 is known to

the transmitter, S2 is known to the receiver and S3 is available at the eavesdropper’s

site. However, setting S = S1, Y = (Ỹ ,S2), Z = (Z̃,S3) in SD-WTC with non-causal

encoder CSI and defining the channel’s transition probability as

WY,Z|X ,S=W(Ỹ ,S2),(Z̃,S3)|X ,S1
=WS2,S3|S1

WỸ ,Z̃|X ,S1,S2,S3
,

one clearly recovers this (prima facie) general SD-WTC from the model with non-

causal encoder CSI only.

Definition 2 (Code). An (n,RM,RK)-code cn for the SD-WTC with non-causal en-

coder CSI has a message set Mn ,
[

1 : 2nRM
]

, a key set Kn ,
[

1 : 2nRK
]

, a stochastic

encoder fn : Mn ×Sn →P(Kn ×X n) and a decoder φn : Yn →Mn ×Kn.

For any message distribution PM ∈ P(Mn) and any (n,RM,RK)-code cn, the in-

duced joint PMF is:

p(cn)(s,m,k,x,y,z, m̂, k̂) =W n
S (s)PM(m) fn(k,x|m,s)W n

Y,Z|X ,S(y,z|x,s)

×1{
(m̂,k̂)=φn(y)

}. (2)

The performance of cn is evaluated in terms of its rate pair (RM,RK), its maximal

decoding error probability, the maximal distance of the distribution of K from being

uniform and independent of M, and the SS-metric.

Definition 3 (Maximal Error Probability). The maximal error probability of an

(n,RM,RK)-code cn is e(cn) = maxm∈Mn
em(cn), where:

em(cn) = ∑
(s,k,x)

∈Sn×Kn×X n

W n
S (s) fn(k,x|m,s)∑

y∈Yn:
φn(y) 6=(m,k)

W n
Y |X ,S(y|x,s)
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Definition 4 (Maximal Distance to Key Uniformity). The maximal distance to key

uniformity and independence of the message of an (n,RM,RK)-code cn is δ (cn) =

maxm∈Mn
δm(cn), where δm(cn) =

∣

∣

∣

∣p
(cn)
K|M=m

− p
(U)
Kn

∣

∣

∣

∣

TV
and p

(U)
Kn

is the uniform

PMF over Kn.

Definition 5 (Information Leakage and SS Metric). The information leakage to

the eavesdropper under the (n,RM,RK)-code cn and the message-key PMF pM,K ∈
P(Mn ×Kn) is ℓ(pM,K ,cn) = Icn(M,K;Z), where Icn denotes that the MI is taken

with respect to the marginal p
(cn)
M,K,Z of (2). The SS metric with respect to cn is2

ℓSem(cn) = maxpM,K∈P(Mn×Kn) ℓ(pM,K ,cn).

Definition 6 (Achievability). A pair (RM,RK) ∈ R
2
+ is called an achievable SS

message-key pair for the SD-WTC with non-causal encoder CSI, if for every ε > 0

and sufficiently large n, there exists a CR (n,RM,RK)-code cn with e(cn) ≤ ε ,

δ (cn)≤ ε and ℓSem(cn)≤ ε .

Definition 7 (SS-Capacity). The SS message-key capacity region CSem of the SD-

WTC with non-causal encoder CSI is the closure of the set of achievable rate pairs.

3.2 Main Results

The main result of this work is a novel inner bound on the SS message-key capacity

region of the SD-WTC with non-causal encoder CSI. Our achievable region is at

least as good as the best known achievability results for the considered problem.

To state our main result, let U and V be finite alphabets and for any qU,V,X |S : S →
P(U ×V ×X ) define

RA

(

qU,V,X |S

)

,















(RM,RK) ∈ R
2
+

∣

∣

∣

∣

∣

∣

∣

∣

RM ≤ I(U,V ;Y )− I(U,V ;S)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U),

RM +RK ≤ I(U,V ;Y )− I(V ;Z|U)− I(U ;S)















, (3)

where the MI terms are calculated with respect to the joint PMF WSqU,V,X |S ×WY,Z|X ,S,

i.e., where (U,V )− (X ,S)− (Y,Z) forms a Markov chain.

Theorem 1 (Semantic-Security SM-SK Capacity Inner Bound). The following

inclusion holds:

CSem ⊇RA ,
⋃

qU,V,X |S

RA

(

qU,V,X |S

)

. (4)

2 ℓSem(cn) is actually the mutual-information-security (MIS) metric, which is equivalent to SS

by [3]. We use this representation rather than the formal definition of SS (see, e.g., [3, Equation

(4)]) out of analytical convenience.
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An extended outline of the proof of Theorem 1 is given in Section 5, and is based

on a secured superposition coding scheme. An over-populated two-layered super-

position codebook is constructed (independently of the state sequence), in which

the entire secret message is encoded in the outer layer, meaning no information is

carried by the inner layer. The likelihood encoder [24] uses the redundancies in the

inner and outer codebooks to correlate the transmitted codewords with the observed

state sequence. Upon doing so, part of the correlation index from the outer layer is

declared by the encoder as the key. The inner layer is designed to utilize the part of

the channel which is better observable by the eavesdropper. This saturates the eaves-

dropper with redundant information and leaves him/her with insufficient resources

to gather any information on the SM-SK pair from the outer layer. The legitimate

decoder, on the other hand, decodes both layers of the codebook and declares the

appropriate indices as the decoded message-key pair.

Remark 2 (Interpretation of Theorem 1). To get some intuition on the result of The-

orem 1, we examine RA(qU,V,X |S) from two different perspectives: when the joint

PMF WSqU,V,X |SWY,Z|X ,S satisfies I(U ;Y )≥ I(U ;S), or when the opposite inequality

holds.

If I(U ;Y )≥ I(U ;S), the third rate bound in RA(qU,V,X |S) becomes redundant and

the dominating bounds are

RM ≤ I(U,V ;Y )− I(U,V ;S) (5a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U). (5b)

The right-hand side (RHS) of (5a) is the total rate of reliable (secured and un-

secured) communication that our superposition codebook supports. This clearly

bounds the rate of the SM that may be transmitted. For (5b), the MI difference

on the RHS is the total rate of secrecy resources that are produced by the outer

layer of the codebook. The outer layer can achieve a secure communication rate

of I(V ;Y |U)− max
{

I(V ;Z|U), I(V ;S|U)
}

, and it can produce a SK at a rate of
[

I(V ;S|U)− I(V ;Z|U)
]+

, where [x]+ = max{0,x}. The SK consists of some of the

dummy bits needed to correlate the transmission with the state, which are secure

for the same reason that the SM is secure. Since the security of our SM-SK pair

all comes from that outer layer, this MI difference is an upper bound on the sum of

rates.

For the opposite case when I(U ;Y ) < I(U ;S), the second inequality in RA be-

comes redundant and we are left with

RM ≤ I(U,V ;Y )− I(U,V ;S) (6a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U)−
[

I(U ;S)− I(U ;Y )
]

. (6b)

While the interpretation of (6a) remains as before, to understand (6b), consider the

following. Since I(U ;S) is approximately the rate of the inner codebook, I(U ;Y )<
I(U ;S) means that looking solely on the inner layer, the decoder is lacking the res-

olution to decode it. Yet, the success of our communication protocol relies on the
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decoder reliably decoding both layers. Therefore, in this case, some of the rate from

the outer layer is allocated to convey the inner layer index. Recalling that our se-

curity analysis is based on revealing the inner layer to the eavesdropper, this rate

allocation effectively results in a loss of I(U ;S)− I(U ;Y ) in the secrecy resources

of the outer layer, giving rise to the rate bound from (6b).

4 Past Results as Special Cases

4.1 Prabhakarn’s SM-SK Trade-off Region

The result of Theorem 1 recovers the previously best known achievable SM-SK

trade-off region over the SD-WTC with non-causal encoder CSI from [21]. In [21,

Theorem 1] the following region was established as an inner bound on the SM-SK

trade-off capacity region:

RPER ,
⋃

qU×qV,X |U,S

RPER

(

qU ×qV,X |U,S

)

, (7a)

where for any qU ∈ P(U) and qV,X |U,S : U ×S →P(V ×X ),

RPER

(

qU ×qV,X |U,S

)

,

{

(RM,RK) ∈ R
2
+

∣

∣

∣

∣

∣

RM ≤ I(U,V ;Y )− I(U,V ;S)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U)

}

, (7b)

and the MI terms are taken with respect to WSqU qV,X |U,SWY,Z|X ,S, i.e., U and S are

independent and (U,V )− (X ,S)− (Y,Z) forms a Markov chain.

First note that Theorem 1 recovers RPER by restricting U to be independent of

S in RA. This is since for an independent pair (U,S), we have I(U ;S) = 0, while

I(U,V ;Y )≥ I(V ;Y |U) always holds. This makes the third rate bound in RA redun-

dant and RPER is recovered.

The result from [21] was derived under the weak-secrecy metric (i.e., a vanish-

ing normalized MI between the SM-SK pair and the eavesdropper’s observation

sequence 1
n
I(M,K;Z) where the message-key pair is assumed to be uniformly dis-

tributed). Our achievability, on the other hand, ensures performance with respect

to the stringent SS-metric. Since Theorem 1 captures [21, Theorem 1] as a special

case, it also upgrades its result to SS.
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4.2 SM Transmission over SD-WTCs

In [12, Theorem 1] a lower bound on the SS-capacity of a SM transmission over the

considered SD-WTC was established. The model considered in [12] is recovered

from the one considered here by removing the SK (RK = 0). The SS-capacity of a

SM transmission was shown to be lower bounded as

CSM−Sem ≥ RGCP , max
qU,V,X |S

RGCP

(

qU,V,X |S

)

, (8a)

where for any qU,V,X |S : S →P(U ×V ×X ),

RGCP

(

qU,V,X |S

)

, min











I(U,V ;Y )− I(U,V ;S),

I(V ;Y |U)− I(V ;Z|U),

I(U,V ;Y )− I(V ;Z|U)− I(U ;S)











, (8b)

and the MI terms are taken with respect to WSqU,V,X |SWY,Z|X ,S, i.e., (U,V )− (X ,S)−
(Y,Z) forms a Markov chain.

RGCP is the projection in the (RM,RK)-plane of RA from Theorem 1 to the RM

axis when RK = 0. Then main difference between the coding scheme from [12]

and our superposition code is the introduction of the additional index k ∈ Kn in the

outer layer of the codebook (that also encodes the SM m ∈ Mn). Along with the

other redundancy indices, k is used to correlate the transmission with the observed

state sequence via the likelihood encoder [24]. Based on distribution approximation

arguments we show that K is approximately independent of the message M and

approximately uniform. The pair (M,K) is known to the transmitter (who chooses

them) and is reliably decoded by the receiver. Finally, by securing K along with M

in our analysis, it is established as a SK.

The intuition behind the SK construction is that, unlike the message, the key

does not have to be independent of the state sequence nor it is chosen by the user.

Therefore, the padding that ensures the correlation with the state sequence is a valid

key, as long as it is protected in the security analysis.

4.3 SK Agreement over SD-WTCs

In [2] two achievable schemes were proposed for SK agreement over a wiretap chan-

nel when the terminals have access to correlated sources. The results from [2] do not

imply one another and differ in one scheme being based on source and channel sep-

aration [2, Theorem 2], while in the other the coding is done jointly [2, Theorem

3].

The setup in [2] consists of three correlated sources Sx, Sy and Sz that are observed

by the encoder, decoder and eavesdropper, respectively, and a SD-WTC in which

the triple (Sx,Sy,Sz) plays the role of the state. Our general framework is defined
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through the state distribution WS and the SD-WTC WỸ ,Z̃|X ,S. Setting S = Sx, Ỹ =

(Sy,Y ) and Z̃ = (Sz,Z) recovers the model from [2] (see Remark 1).

The first scheme from [2, Theorem 2] operates under the assumption that the

SD-WTC decomposes as W(Sy,Y ),(Sz,Z)|X ,Sx
= WSy,Sz|Sx

WY,Z|X into a product of two

WTCs, one being independent of the state, while the other one depends only on

it. Thus, the legitimate receiver (respectively, the eavesdropper) observes not only

the output Y (respectively, Z) of the WTC WY,Z|X , but also Sy (respectively, Sz) - a

noisy version of the state sequence drawn according to the marginal of WSy,Sz|S. This

scheme shows that the SK capacity CSK is lower bounded as

CSK ≥ R
(Separate)
BPS , max

[

I(T ;Y |Q)− I(T ;Z|Q)+ I(Ṽ ;Sy|Ũ)− I(Ṽ ;Sz|Ũ)
]

(9)

where the maximization is over all qṼ |Sx
qŨ |Ṽ : Sx → P(Ṽ × Ũ) and qQ,T qX |T ∈

P(Q×T ×X ) that give rise to a joint PMF WSx,Sy,SzqṼ |Sx
qŨ |Ṽ × qQ,T qX |TWY,Z|X

satisfying I(Ũ ;Sx|Sy) ≤ I(Q;Y ) and I(Ṽ ;Sx|Sy) ≤ I(T ;Y ). With respect to this dis-

tribution (Sy,Sz)− Sx −V −U and Q − T − X − (Y,Z) form Markov chains and

(Sy,Sz,Sx,V,U) are independent of (Q,T,X ,Y,Z). This independence is the essence

of separation that uses the channel for two purposes: carrying communication for

SK agreement based on the sources, and securing part of this communication using

wiretap coding.

Setting RM = 0, U = (Q,Ũ), V = (T,Ṽ ) in Theorem 1, and limiting ourselves to

joint PMFs that satisfy I(U ;Y ) ≥ I(U ;Sx), while keeping the above distribution X ,

recovers (9).

The joint coding scheme from [2, Theorem 3] does not require sources and chan-

nel independence. i.e., no factorization property of W(Sy,Y ),(Sz,Z)|X ,Sx
is assumed. It

lower bounds CSK as

CSK ≥ R
(Joint)
BPS , max

[

I(Ṽ ;Sy,Y |Ũ)− I(Ṽ ;Sz,Z|Ũ)
]

(10)

where the maximization is over all qṼ ,X |Sx
qŨ |Ṽ : Sx →P(Ṽ ×X ×Ũ) that give rise

to a joint PMF WSx qṼ ,X |Sx
qŨ |ṼW(Sy,Y ),(Sz,Z)|Sx,X satisfying I(Ũ ;Sx)≤ I(Ũ ;Sy,Y ) and

I(Ṽ ;Sx|Ũ) ≤ I(Ṽ ;Sy,Y |Ũ). Inserting into Theorem 1 RM = 0 and (U,V ) = (Ũ ,Ṽ ),

where (Ũ ,Ṽ ) is a valid auxiliary pair in R
(Joint)
BPS , recovers (10). Consequently, The-

orem 1 unifies the schemes from [2], and since the results from [2] are under the

weak-secrecy metric, Theorem 1 also upgrades them to SS (see the discussion from

Section 4.1).

5 Outline of Proof of Theorem 1

We give a detailed description of the codebook construction and of the encoding

and decoding processes. Due to space limitation, the analysis of reliability and SS is
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omitted and only the required rate bounds accompanied by broad explenations are

provided. Fix a conditional PMF qU,V,X |S.

Codebook Cnnn: We use a superposition codebook where the outer layer carries

both the SM and the SK. The codebook is constructed independently of S, but has

sufficient redundancy to correlate the transmission with S.

Define the index sets In ,
[

1 : 2nR1
]

and Jn ,
[

1 : 2nR2
]

, and let B
(n)
U ,

{

u(i)
}

i∈In
be an inner layer codebook generated as i.i.d. samples of qn

U . For every

i∈ In, let B
(n)
V (i),

{

v(i, j,k,m)
}

( j,k,m)∈Jn×Kn×Mn
be a collection of |Jn||Kn||Mn|

vectors of length n drawn according to the distribution qn
V |U=u(i). We use Cn to de-

note our superposition codebook, i.e., the collection of the inner and all the outer

layer codebooks. The encoder and decoder are described next for a fixed superposi-

tion codebook Cn.

Encoder fff
(Cn)
nnn : The encoding phase is based on the likelihood-encoder [24],

which, in turn, allows us to approximate the (rather cumbersome) induced joint

distribution by a much simpler distribution which we use for the analysis. Given

m∈Mn and s∈Sn, the encoder randomly chooses (i, j,k)∈In×Jn×Kn according

to

p
(Cn)
LE (i, j,k|m,s) =

qn
S|U,V

(

s
∣

∣u(i),v(i, j,k,m)
)

∑
(i′, j′,k′)

∈In×Jn×Kn

qn
S|U,V

(

s
∣

∣u(i′),v(i′, j′,k′,m)
) (11)

where qS|U,V is the conditional marginal of qS,U,V defined by qS,U,V (s,u,v) =

∑x∈X WS(s)qU,V,X |S(u,v,x|s), for every (s,u,v) ∈ S ×U ×V . The encoder declares

the index k ∈ Kn chosen by the by p
(Cn)
LE as the key. Furthermore, the channel input

sequence is generated by feeding the chosen u- and v-codewords along with the state

sequence into the DMC qn
X |U,V,S

.

Decoder φφφ
(Cn)
nnn : Upon observing y ∈ Yn, the decoder searches for a unique tuple

(î, ĵ, k̂, m̂) ∈ In ×Jn ×Kn ×Mn such that
(

u(î),v(î, ĵ, k̂, m̂),y
)

∈ T n
ε (qU,V,Y ). If

such a unique quadruple is found, then set φ
(Cn)
n (y) =

(

m̂, k̂
)

; otherwise, φ
(Bn)
n (y) =

(1,1).

The quadruple (Mn,Kn, f
(Cn)
n ,φ

(Cn)
n ) defined with respect to the codebook Cn

constitutes an (n,RM,RK)-code cn.

Main ideas for the analysis: The key step is to approximate (in total variation)

the joint PMF induced by the above encoding and decoding scheme, say p(Cn), by

a new distribution Γ (Cn), which lands itself easier for the reliability and security

analyses. For any pM ∈ P(Mn), Γ (Cn) is

Γ (Cn)(m, i, j,k,u,v,s,x,y,z, m̂) = pM(m)
1

|In||Jn||Kn|
1{

u=u(i),v=v(i, j,k,m)
}

×qn
S|U,V (s|u,v)q

n
X |U,V,S(x|u,v,s)W

n
Y,Z|X ,S(y,z|x,s)1

{

φ
(Cn)
n (y)=(m̂,k̂)

}. (12)
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Namely, with respect to Γ (Cn), the indices (i, j,k) ∈ In ×Jn ×Kn are uniformly

drawn from their respective ranges. Then, the sequence s is generated by feeding

the corresponding u- and v-codewords into the DMC qn
S|U,V

. Based on [12, Lemma

1], it can be shown that with respect to a random superposition codebook Cn, p(Cn)

and Γ (Cn) are close in total variation in several senses (both in expectation and with

high probability), if

R1 > I(U ;S) (13a)

R1 +R2 +RK > I(U,V ;S). (13b)

Having this, standard properties of total variation imply that K is indeed approx-

imately uniform and independent of M. Furthermore, based on the approximation

of p(Cn) with Γ (Cn), both the reliability and the security analysis are executed with

respect to Γ (Cn) rather than p(Cn). Standard joint-typicality decoding arguments for

superposition codes show that reliability follows provided that

R2 +RK +RM < I(V ;Y |U), (14a)

R1 +R2 +RK +RM < I(U,V ;Y ). (14b)

With the help of the heterogeneous strong SCL from [10, Lemma 1], SS is ensured

if

R2 > I(V ;Z|U). (15)

The rate bound in 15 ensures that the distribution of the eavesdropper’s observation

given the inner layer codeword and each SM-SK pair is asymptotically indistin-

guishable form random noise. This asymptotic independence, in turn, implies se-

mantic security.

Finally, applying the Fourier-Motzkin Elimination on (13), (14) and (15) to re-

move R1 and R2, shows that RA

(

qU,V,X |S

)

is achievable.

6 Summary and Concluding Remarks

We studied the trade-off between SM and SK rates simultaneously achievable over

a SD-WTC with non-causal CSI at the encoder. This model subsumes all other in-

stances of CSI availability as special cases. An inner bound on the semantic-security

SM-SK capacity region was derived based on a novel superposition coding scheme,

the likelihood encoder and soft-converging arguments. We showed that our inner

bound recovers the previously best known SM-SK trade-off region by Prabhakaran

et al. [21]. Furthermore, our result recovers the best lower bounds that we are aware

of for either SM or SK rates achievable in this setup [2,12]. Unlike most of the previ-

ous results that were derived under the weak secrecy metric, our derivations ensure

semantic-security. It would be interesting to demonstrate a strict improvement of the

scheme presented here over the results in [21].
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