Smooth Wasserstein Distance: Metric Structure and Statistical Efficiency

Ziv Goldfeld¹, Kristjan Greenewald²

 1 Cornell University 2 MIT-IBM Watson AI Lab

AISTATS 2020

Generative Modeling:

Generative Modeling:

 \bullet Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P\in\mathcal{P}(\mathbb{R}^d)$

Generative Modeling:

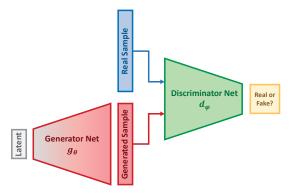
- \bullet Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P\in\mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)

Generative Modeling:

- \bullet Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P\in\mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)

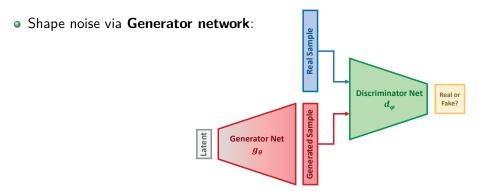
Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)



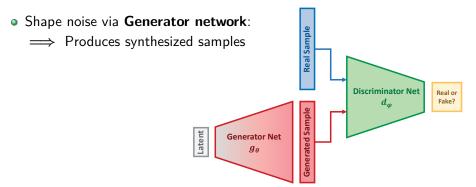
Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)



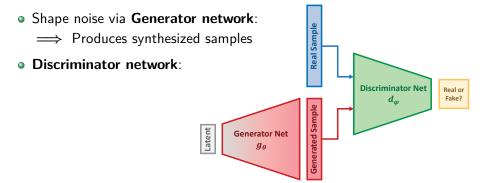
Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)



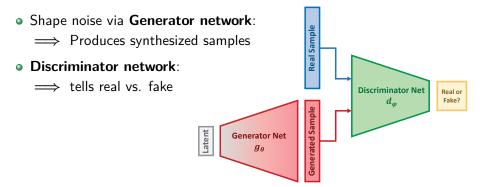
Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)



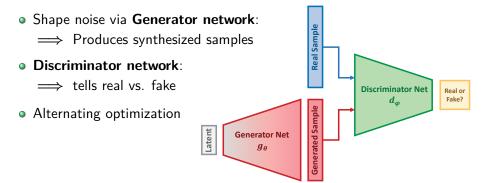
Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)



Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)



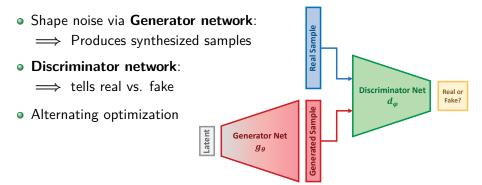
Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)

- Shape noise via **Generator network**:
 - → Produces synthesized samples
- Discriminator network:
 - ⇒ tells real vs. fake
- Alternating optimization

Generative Modeling:

- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)



Generative Modeling:

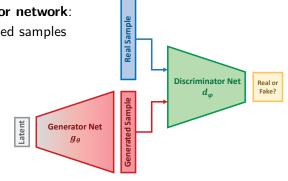
- Input: Unlabeled data $\{x_i\}_{i=1}^n$ i.i.d. from (unknown) $P \in \mathcal{P}(\mathbb{R}^d)$
- Goal: Learn underlying structure in data (e.g., $Q_{\theta} \approx P$)

Generative Adversarial Networks: State-of-the-art generative models

- Shape noise via Generator network:
 Produces synthesized samples
- Discriminator network:
- ⇒ tells real vs. fake
- Alternating optimization

Question:

How to quantify $Q_{\theta} \approx P$?



Quantification: Via statistical divergence

Quantification: Via statistical divergence

$$\bullet \ \delta: \mathcal{P}(\mathbb{R}^d) \times \mathcal{P}(\mathbb{R}^d) \to [0,+\infty) \quad \text{s.t.} \quad \delta(P,Q) = 0 \ \iff \ P = Q$$

Quantification: Via statistical divergence

$$\bullet \ \delta: \mathcal{P}(\mathbb{R}^d) \times \mathcal{P}(\mathbb{R}^d) \to [0,+\infty) \quad \text{s.t.} \quad \delta(P,Q) = 0 \iff P = Q$$

$$\implies$$
 Principled Objective: $\inf_{\theta} \delta(Q_{\theta}, P)$

Quantification: Via statistical divergence

$$\bullet \ \delta: \mathcal{P}(\mathbb{R}^d) \times \mathcal{P}(\mathbb{R}^d) \to [0,+\infty) \quad \text{s.t.} \quad \delta(P,Q) = 0 \ \iff \ P = Q$$

$$\implies$$
 Principled Objective: $\inf_{\theta} \delta(Q_{\theta}, P)$

 ${\bf \circledast}$ Coincides with minimax formulation when δ is 1-Wasserstein distance:

Quantification: Via statistical divergence

$$\bullet \ \delta: \mathcal{P}(\mathbb{R}^d) \times \mathcal{P}(\mathbb{R}^d) \to [0,+\infty) \quad \text{s.t.} \quad \delta(P,Q) = 0 \ \iff \ P = Q$$

$$\implies$$
 Principled Objective: $\inf_{\theta} \delta(Q_{\theta}, P)$

 ${\bf \circledast}$ Coincides with minimax formulation when δ is 1-Wasserstein distance:

Definition (1-Wasserstein distance)

$$\text{For }P,Q\in\mathcal{P}_1(\mathbb{R}^d)\colon\quad \mathsf{W}_1(P,Q):=\inf_{\pi\in\Pi(P,Q)}\mathbb{E}_\pi\|X-Y\|,$$

where $\Pi(P,Q)$ is the set of all couplings of P and Q.

Quantification: Via statistical divergence

•
$$\delta: \mathcal{P}(\mathbb{R}^d) \times \mathcal{P}(\mathbb{R}^d) \to [0, +\infty)$$
 s.t. $\delta(P, Q) = 0 \iff P = Q$

$$\implies$$
 Principled Objective: $\inf_{\theta} \delta(Q_{\theta}, P)$

 ${f \$}$ Coincides with minimax formulation when δ is 1-Wasserstein distance:

Definition (1-Wasserstein distance)

For $P,Q\in\mathcal{P}_1(\mathbb{R}^d)$: $\mathsf{W}_1(P,Q):=\inf_{\pi\in\Pi(P,Q)}\mathbb{E}_\pi\|X-Y\|$, where $\Pi(P,Q)$ is the set of all couplings of P and Q.

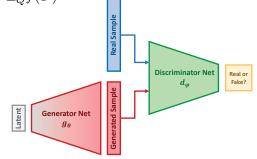
Pros: Metric on $\mathcal{P}_1(\mathbb{R}^d)$ & Robust to supp. mismatch $W_1(P,Q)<\infty$

Kantorovich-Rubinstein Duality:

$$\mathsf{W}_1(P,Q) = \sup_{f \in \mathsf{Lip}_1(\mathbb{R}^d)} \mathbb{E}_P f(X) - \mathbb{E}_Q f(Y)$$

Kantorovich-Rubinstein Duality:

$$\mathsf{W}_1(P,Q) = \sup_{f \in \mathsf{Lip}_1(\mathbb{R}^d)} \mathbb{E}_P f(X) - \mathbb{E}_Q f(Y)$$

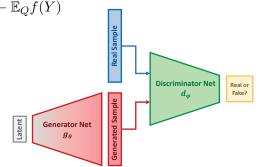


Kantorovich-Rubinstein Duality:

$$\mathsf{W}_1(\boldsymbol{P},Q) = \sup_{f \in \mathsf{Lip}_1(\mathbb{R}^d)} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X}) - \mathbb{E}_Q f(Y)$$

Correspondence to GANs:

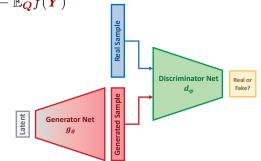
 \bullet P = data distribution



Kantorovich-Rubinstein Duality:

$$W_1(\boldsymbol{P}, \boldsymbol{Q}) = \sup_{f \in \mathsf{Lip}_1(\mathbb{R}^d)} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X}) - \mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$$

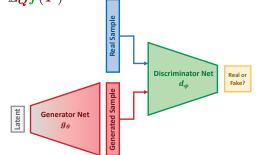
- $P = data \ distribution$
- $Q = Q_{\theta}$ model



Kantorovich-Rubinstein Duality:

$$\mathsf{W}_1(\boldsymbol{P},\boldsymbol{Q}) = \sup_{\boldsymbol{f} \in \mathsf{Lip}_1(\mathbb{R}^d)} \mathbb{E}_{\boldsymbol{P}} \boldsymbol{f}(\boldsymbol{X}) - \mathbb{E}_{\boldsymbol{Q}} \boldsymbol{f}(\boldsymbol{Y})$$

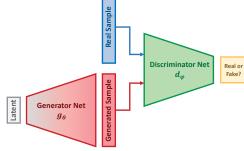
- P = data distribution
- $Q = Q_{\theta}$ model
- $f = d_{\varphi}$ disc. (Lip₁ constraint)



Kantorovich-Rubinstein Duality:

$$\mathsf{W}_1(\boldsymbol{P},\boldsymbol{Q}) = \sup_{\boldsymbol{f} \in \mathsf{Lip}_1(\mathbb{R}^d)} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X}) - \mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$$

- P = data distribution
- $Q = Q_{\theta}$ model
- $\bullet \ f = d_{\varphi} \ {\rm disc.} \ \left({\rm Lip}_1 \ {\rm constraint} \right)$

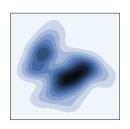


$$\implies \inf_{\theta} W_1(P, Q_{\theta}) \cong \inf_{\theta} \sup_{\varphi : d_{\varphi} \in \mathsf{Lip}_1(\mathbb{R}^d)} \mathbb{E} d_{\varphi}(X) - \mathbb{E} d_{\varphi}(g_{\theta}(Z))$$

Empirical Approx.: In practice we don't have P, only data samples

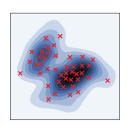
Empirical Approx.: In practice we don't have P, only data samples

ullet $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P\in\mathcal{P}_1(\mathbb{R}^d)$



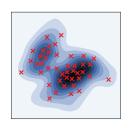
Empirical Approx.: In practice we don't have P, only data samples

ullet $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P\in\mathcal{P}_1(\mathbb{R}^d)$



Empirical Approx.: In practice we don't have P, only data samples

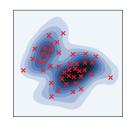
- ullet $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P\in\mathcal{P}_1(\mathbb{R}^d)$
- ullet Empirical distribution $P_n riangleq rac{1}{n} \sum_{i=1}^n \delta_{X_i}$



Empirical Approx.: In practice we don't have P, only data samples

- ullet $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P\in\mathcal{P}_1(\mathbb{R}^d)$
- Empirical distribution $P_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- \implies Inherently we work with $W_1(P_n, Q_\theta)$

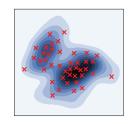
$$\left[\mathsf{W}_1(P_n, Q_\theta) pprox \mathsf{W}_1(P, Q_\theta) \text{ hopefully...} \right]$$



Empirical Approx.: In practice we don't have P, only data samples

- ullet $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P\in\mathcal{P}_1(\mathbb{R}^d)$
- Empirical distribution $P_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- \implies Inherently we work with $\mathsf{W}_1(P_n,Q_\theta)$

$$\left[\mathsf{W}_1(P_n, {\color{red}Q_{\theta}}) pprox \mathsf{W}_1(P, {\color{red}Q_{\theta}}) \text{ hopefully...}
ight]$$



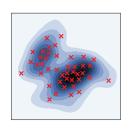
Theorem (Dudley'69)

For
$$d \geq 3$$
 and $\mathcal{P}_1(\mathbb{R}^d) \ni P \ll \mathsf{Leb}(\mathbb{R}^d)$: $\mathbb{E}\mathsf{W}_1(P_n,P) \asymp n^{-\frac{1}{d}}$

Empirical Approx.: In practice we don't have P, only data samples

- ullet $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P\in\mathcal{P}_1(\mathbb{R}^d)$
- Empirical distribution $P_n \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$
- \implies Inherently we work with $W_1(P_n, Q_{\theta})$

$$\left[\mathsf{W}_1(P_n, Q_{ heta}) pprox \mathsf{W}_1(P, Q_{ heta}) ext{ hopefully...}
ight]$$



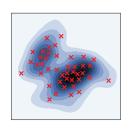
Theorem (Dudley'69)

For
$$d \geq 3$$
 and $\mathcal{P}_1(\mathbb{R}^d) \ni P \ll \mathsf{Leb}(\mathbb{R}^d)$: $\mathbb{E}\mathsf{W}_1(P_n,P) \asymp n^{-\frac{1}{d}}$

Empirical Approx.: In practice we don't have P, only data samples

- ullet $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P\in\mathcal{P}_1(\mathbb{R}^d)$
- Empirical distribution $P_n \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$
- \implies Inherently we work with $W_1(P_n, Q_\theta)$

$$\left[\mathsf{W}_1(P_n, \ensuremath{Q}_{ heta}) pprox \mathsf{W}_1(P, \ensuremath{Q}_{ heta}) ensuremath{}$$
 hopefully... $ight]$



Theorem (Dudley'69)

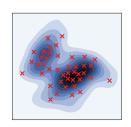
For
$$d \geq 3$$
 and $\mathcal{P}_1(\mathbb{R}^d) \ni P \ll \mathsf{Leb}(\mathbb{R}^d)$: $\mathbb{E}\mathsf{W}_1(P_n,P) \asymp n^{-\frac{1}{d}}$

🛞 Implication: Too slow given dimensionality of real-world data

Empirical Approx.: In practice we don't have P, only data samples

- $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P \in \mathcal{P}_1(\mathbb{R}^d)$
- Empirical distribution $P_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- \implies Inherently we work with $W_1(P_n, Q_\theta)$

$$\left[\mathsf{W}_1(P_n, {\color{red}Q_{\theta}}) pprox \mathsf{W}_1(P, {\color{red}Q_{\theta}}) \text{ hopefully...}
ight]$$



Theorem (Dudley'69)

For
$$d \geq 3$$
 and $\mathcal{P}_1(\mathbb{R}^d) \ni P \ll \mathsf{Leb}(\mathbb{R}^d)$: $\mathbb{E}\mathsf{W}_1(P_n,P) \asymp n^{-\frac{1}{d}}$

- ★ Implication: Too slow given dimensionality of real-world data
- **❸ Goal:** Define a new metric that alleviates CoD

Smooth 1-Wasserstein Distance

Definition

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 I_d)$ is a d-dimensional isotropic Gaussian.

Definition

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 I_d)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$

Definition

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 I_d)$ is a d-dimensional isotropic Gaussian.

Interpretation:
$$X \sim P$$
, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$
$$X \perp Z_1 \implies X + Z_1 \sim P * \mathcal{N}_{\sigma}$$

$$Y \perp Z_2 \implies Y + Z_2 \sim Q * \mathcal{N}_{\sigma}$$

Definition

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 I_d)$ is a *d*-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$

$$X \perp Z_1 \implies X + Z_1 \sim P * \mathcal{N}_{\sigma}$$

$$Y \perp Z_2 \implies Y + Z_2 \sim Q * \mathcal{N}_{\sigma}$$

 \implies W₁ distance between smoothed distributions

Definition

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 I_d)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$

$$X \perp Z_1 \implies X + Z_1 \sim P * \mathcal{N}_{\sigma}$$

 $Y \perp Z_2 \implies Y + Z_2 \sim Q * \mathcal{N}_{\sigma}$

 \implies W₁ distance between smoothed distributions

Retain KR Duality: $W_1^{(\sigma)}$ is W_1 but between convolved distributions:

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) = \sup_{f \in \mathsf{Lip}_{1}(\mathbb{R}^{d})} \mathbb{E}f(X + Z_{1}) - \mathbb{E}f(Y + Z_{2})$$

High Level: $W_1^{(\sigma)}$ inherits the metric structure of 1-Wasserstein

High Level: $W_1^{(\sigma)}$ inherits the metric structure of 1-Wasserstein

Theorem

$$\left(\mathcal{P}_1(\mathbb{R}^d), \mathsf{W}_1^{(\sigma)}\right)$$
 is metric space, $\forall \sigma \geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak conv.).

High Level: $W_1^{(\sigma)}$ inherits the metric structure of 1-Wasserstein

Theorem

$$\left(\mathcal{P}_1(\mathbb{R}^d),\mathsf{W}_1^{(\sigma)}\right)$$
 is metric space, $\forall \sigma\geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak conv.).

Key Idea for Pf.: Use Characteristic functions $\Phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and:

High Level: $W_1^{(\sigma)}$ inherits the metric structure of 1-Wasserstein

Theorem

$$\left(\mathcal{P}_1(\mathbb{R}^d),\mathsf{W}_1^{(\sigma)}\right)$$
 is metric space, $\forall \sigma\geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak conv.).

Key Idea for Pf.: Use Characteristic functions $\Phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and:

$$\Phi_{P*\mathcal{N}_\sigma}(t) = \Phi_P(t)\Phi_{\mathcal{N}_\sigma}(t) \text{ together with } \Phi_{\mathcal{N}_\sigma}(t) = e^{-\frac{\sigma^2\|t\|^2}{2}} \neq 0, \ \forall t.$$

High Level: $W_1^{(\sigma)}$ inherits the metric structure of 1-Wasserstein

Theorem

$$\left(\mathcal{P}_1(\mathbb{R}^d),\mathsf{W}_1^{(\sigma)}\right)$$
 is metric space, $\forall \sigma\geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak conv.).

Key Idea for Pf.: Use Characteristic functions $\Phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and:

$$\Phi_{P*\mathcal{N}_{\sigma}}(t) = \Phi_{P}(t)\Phi_{\mathcal{N}_{\sigma}}(t) \text{ together with } \Phi_{\mathcal{N}_{\sigma}}(t) = e^{-\frac{\sigma^{2}||t||^{2}}{2}} \neq 0, \ \forall t.$$

Corollary

$$P, Q_i, \in \mathcal{P}(\mathbb{R}^d)$$
, $i = 1, \ldots$ Then: $\mathsf{W}_1^{(\sigma)}(Q_i, P) \to 0$ iff $\mathsf{W}_1(Q_i, P) \to 0$

<u>High Level:</u> $W_1^{(\sigma)}$ inherits the metric structure of 1-Wasserstein

Theorem

$$\left(\mathcal{P}_1(\mathbb{R}^d),\mathsf{W}_1^{(\sigma)}\right)$$
 is metric space, $\forall \sigma \geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak conv.).

Key Idea for Pf.: Use Characteristic functions $\Phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and:

$$\Phi_{P*\mathcal{N}_{\sigma}}(t) = \Phi_{P}(t)\Phi_{\mathcal{N}_{\sigma}}(t) \text{ together with } \Phi_{\mathcal{N}_{\sigma}}(t) = e^{-\frac{\sigma^{2}||t||^{2}}{2}} \neq 0, \ \forall t.$$

Corollary

$$P,Q_i,\in\mathcal{P}(\mathbb{R}^d)$$
, $i=1,\ldots$ Then: $\mathsf{W}_1^{(\sigma)}(Q_i,P)\to 0$ iff $\mathsf{W}_1(Q_i,P)\to 0$

 $\textcircled{\$}\ \mathsf{W}_1^{(\sigma)}$ and W_1 induce same topology

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

<u>High Level:</u> $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

<u>High Level:</u> $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

<u>High Level:</u> $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

- $f W_1^{(\sigma)}(P,Q)$ is continuous and mono. non-increasing in $\sigma\in[0,+\infty)$

<u>High Level:</u> $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

- $f W_1^{(\sigma)}(P,Q)$ is continuous and mono. non-increasing in $\sigma\in[0,+\infty)$
- \bigcirc $\lim_{\sigma\to\infty} \mathsf{W}_1^{(\sigma)}(P,Q)\neq 0$, for some $P,Q\in\mathcal{P}_1(\mathbb{R}^d)$

<u>High Level:</u> $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

- $\lim_{\sigma\to\infty} \mathsf{W}_1^{(\sigma)}(P,Q)\neq 0$, for some $P,Q\in\mathcal{P}_1(\mathbb{R}^d)$

Pf. Items 1-2: Use dual form to derive stability lemma:

<u>High Level:</u> $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

- $lackbox{ } lackbox{W}_1^{(\sigma)}(P,Q)$ is continuous and mono. non-increasing in $\sigma \in [0,+\infty)$
- $\lim_{\sigma\to\infty} \mathsf{W}_1^{(\sigma)}(P,Q)\neq 0$, for some $P,Q\in\mathcal{P}_1(\mathbb{R}^d)$

Pf. Items 1-2: Use dual form to derive stability lemma:

Lemma

For
$$\sigma_1 < \sigma_2: \quad \mathsf{W}_1^{(\sigma_2)}(P,Q) \leq \mathsf{W}_1^{(\sigma_1)}(P,Q) \leq \mathsf{W}_1^{(\sigma_2)}(P,Q) + 2d\sqrt{\sigma_2^2 - \sigma_1^2}$$

<u>High Level:</u> $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q\in\mathcal{P}_1(\mathbb{R}^d)$)

Theorem

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

- ${f O} \ \ {f W}_1^{(\sigma)}(P,Q)$ is continuous and mono. non-increasing in $\sigma\in[0,+\infty)$

Pf. Items 1-2: Use dual form to derive stability lemma:

Lemma

For $\sigma_1 < \sigma_2: \quad \mathsf{W}_1^{(\sigma_2)}(P,Q) \leq \mathsf{W}_1^{(\sigma_1)}(P,Q) \leq \mathsf{W}_1^{(\sigma_2)}(P,Q) + 2d\sqrt{\sigma_2^2 - \sigma_1^2}$

Pf. Item 3: $W_1^{(\sigma)}(\delta_x, \delta_y) = W_1(\mathcal{N}(x, \sigma^2 I_d), \mathcal{N}(y, \sigma^2 I_d)) = \|x - y\|$

Smooth 1-Wasserstein – Statistical Efficiency

High Level: Alleviate curse of dimensionality & get concentration

Smooth 1-Wasserstein - Statistical Efficiency

High Level: Alleviate curse of dimensionality & get concentration

Theorem

For any $d \ge 1$, $\sigma > 0$ and sub-Gaussian P: $\mathbb{E}W_1^{(\sigma)}(P_n, P) \lesssim n^{-\frac{1}{2}}$

Smooth 1-Wasserstein - Statistical Efficiency

High Level: Alleviate curse of dimensionality & get concentration

Theorem

For any $d \geq 1$, $\sigma > 0$ and sub-Gaussian P: $\mathbb{E}W_1^{(\sigma)}(P_n, P) \lesssim n^{-\frac{1}{2}}$

Theorem

Under same assumptions: denote $\mathcal{X} \triangleq \operatorname{supp}(\mu)$ and suppose $\operatorname{diam}(\mathcal{X}) < \infty$, where $\operatorname{diam}(\mathcal{X}) = \sup_{x \neq y \in \mathcal{X}} \|x - y\|$. For any t > 0 we have

$$\mathbb{P}_{\boldsymbol{\mu}^{\otimes n}}\Big(\Big|\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu}) - \mathbb{E}\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu})\Big| \geq t\Big) \leq 2e^{-\frac{2t^2n}{\mathsf{diam}(\mathcal{X})^2}}$$

Smooth 1-Wasserstein - Statistical Efficiency

High Level: Alleviate curse of dimensionality & get concentration

Theorem

For any $d \ge 1$, $\sigma > 0$ and sub-Gaussian P: $\mathbb{E}W_1^{(\sigma)}(P_n, P) \lesssim n^{-\frac{1}{2}}$

Theorem

Under same assumptions: denote $\mathcal{X} \triangleq \operatorname{supp}(\mu)$ and suppose $\operatorname{diam}(\mathcal{X}) < \infty$, where $\operatorname{diam}(\mathcal{X}) = \sup_{x \neq y \in \mathcal{X}} \|x - y\|$. For any t > 0 we have

$$\mathbb{P}_{\boldsymbol{\mu}^{\otimes n}}\Big(\Big|\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu}) - \mathbb{E}\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu})\Big| \geq t\Big) \leq 2e^{-\frac{2t^2n}{\mathsf{diam}(\mathcal{X})^2}}$$

Comments:

ullet Achieves $n^{-rac{1}{2}}$ bias rate vs $n^{-1/d}$ for W_1 - via maximal TV coupling arg

Smooth 1-Wasserstein – Statistical Efficiency

High Level: Alleviate curse of dimensionality & get concentration

Theorem

For any $d \ge 1$, $\sigma > 0$ and sub-Gaussian P: $\mathbb{E}W_1^{(\sigma)}(P_n, P) \lesssim n^{-\frac{1}{2}}$

Theorem

Under same assumptions: denote $\mathcal{X} \triangleq \operatorname{supp}(\mu)$ and suppose $\operatorname{diam}(\mathcal{X}) < \infty$, where $\operatorname{diam}(\mathcal{X}) = \sup_{x \neq y \in \mathcal{X}} \|x - y\|$. For any t > 0 we have

$$\mathbb{P}_{\boldsymbol{\mu}^{\otimes n}}\Big(\Big|\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu}) - \mathbb{E}\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu})\Big| \geq t\Big) \leq 2e^{-\frac{2t^2n}{\mathsf{diam}(\mathcal{X})^2}}$$

Comments:

- ullet Achieves $n^{-rac{1}{2}}$ bias rate vs $n^{-1/d}$ for ${\sf W}_1$ via maximal TV coupling arg
- "Variance" bounded at the same asymptotic rate achieved via McDiarmid's inequality & KR duality

Smooth 1-Wasserstein – Statistical Efficiency

High Level: Alleviate curse of dimensionality & get concentration

Theorem

For any $d \ge 1$, $\sigma > 0$ and sub-Gaussian P: $\mathbb{E}W_1^{(\sigma)}(P_n, P) \lesssim n^{-\frac{1}{2}}$

Theorem

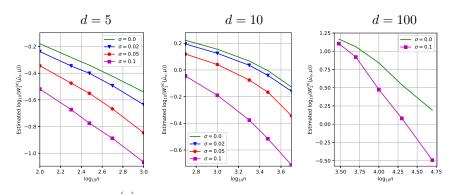
Under same assumptions: denote $\mathcal{X} \triangleq \operatorname{supp}(\mu)$ and suppose $\operatorname{diam}(\mathcal{X}) < \infty$, where $\operatorname{diam}(\mathcal{X}) = \sup_{x \neq y \in \mathcal{X}} \|x - y\|$. For any t > 0 we have

$$\mathbb{P}_{\boldsymbol{\mu}^{\otimes n}}\Big(\Big|\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu}) - \mathbb{E}\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\boldsymbol{\mu})\Big| \geq t\Big) \leq 2e^{-\frac{2t^2n}{\mathsf{diam}(\mathcal{X})^2}}$$

Comments:

- Achieves $n^{-\frac{1}{2}}$ bias rate vs $n^{-1/d}$ for W_1 via maximal TV coupling arg
- "Variance" bounded at the same asymptotic rate achieved via McDiarmid's inequality & KR duality
- ullet Paper: more general statements allowing for non-Gaussian convolutions $_{9/11}$

Synthetic Data Experiments



Convergence of $\mathsf{W}_1^{(\sigma)}(\hat{\mu}_n,\mu)$ as a function of the number of samples n for various values of σ , shown in log-log space. The measure μ is the uniform distribution over $[0,1]^d$. Note that $\sigma=0$ corresponds to the vanilla Wasserstein distance, which converges slower than GOT (observe the difference in slopes), especially with larger d.

ullet Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results
 - Empirical approximation is slow $n^{-\frac{1}{d}}$

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results
 - Empirical approximation is slow $n^{-\frac{1}{d}}$
- Smooth 1-Wasserstein: Convolve distributions w/ Gaussians

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results
 - Empirical approximation is slow $n^{-\frac{1}{d}}$
- Smooth 1-Wasserstein: Convolve distributions w/ Gaussians
 - ▶ Inherits metric structure & duality from the Wasserstein distance

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results
 - Empirical approximation is slow $n^{-\frac{1}{d}}$
- Smooth 1-Wasserstein: Convolve distributions w/ Gaussians
 - ▶ Inherits metric structure & duality from the Wasserstein distance
 - ightharpoonup Well-behaved function of noise parameter & recovers W_1 in limit

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results
 - Empirical approximation is slow $n^{-\frac{1}{d}}$
- Smooth 1-Wasserstein: Convolve distributions w/ Gaussians
 - ▶ Inherits metric structure & duality from the Wasserstein distance
 - ▶ Well-behaved function of noise parameter & recovers W₁ in limit
 - ightharpoonup Fast $n^{-\frac{1}{2}}$ convergence of empirical approximation in all dimensions

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results
 - Empirical approximation is slow $n^{-\frac{1}{d}}$
- Smooth 1-Wasserstein: Convolve distributions w/ Gaussians
 - ▶ Inherits metric structure & duality from the Wasserstein distance
 - ▶ Well-behaved function of noise parameter & recovers W₁ in limit
 - ightharpoonup Fast $n^{-\frac{1}{2}}$ convergence of empirical approximation in all dimensions

- Classic 1-Wasserstein: Metric on $\mathcal{P}_1(\mathbb{R}^d)$
 - ▶ Popular in machine learning (esp. generative modeling)
 - Wasserstein GAN produces outstanding empirical results
 - Empirical approximation is slow $n^{-\frac{1}{d}}$
- Smooth 1-Wasserstein: Convolve distributions w/ Gaussians
 - ▶ Inherits metric structure & duality from the Wasserstein distance
 - ▶ Well-behaved function of noise parameter & recovers W₁ in limit
 - ightharpoonup Fast $n^{-\frac{1}{2}}$ convergence of empirical approximation in all dimensions

Thank you!