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— Principled Objective: i%fé(Qg,P)

® Coincides with minimax formulation when § is 1-Wasserstein distance:

Definition (1-Wasserstein distance)

For P, RY): W, (P = inf E.||X =Y,
or P,Q € Pi1(R?) 1(P,Q) werIII(lP,Q) | |

where II(P, Q) is the set of all couplings of P and Q.

® Pros: Metric on P;(R%) & Robust to supp. mismatch W1 (P, Q) < oo
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feLip; (RY)

Correspondence to GANs:

o P = data distribution
o (Q = Qg model
o f =d, disc. (Lip; constraint)

Real or
Fake?

= |inf Wy (P, Q) = inf sup Ed,(X) —Ed,(9s(2))
o 0 o d,€Lip; (R)
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Empirical Approx.: In practice we don't have P, only data samples

o {X;}%, areiid. samples from P € P;(R%)

o Empirical distribution P, = X

M=

Sx,
1

= Inherently we work with W1 (P,,, Qp)

.
I

W1 (P, Qg) = W1(P,Qy) hopefully...

Theorem (Dudley’69)

For d > 3 and P1(R%) > P< Leb(R): EW; (P,, P)=<n"4

@ Implication: Too slow given dimensionality of real-world data

® Goal: Define a new metric that alleviates CoD
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For 0 > 0, the smooth 1-Wasserstein distance between P and (@ is

W (P,Q) 2 Wi (P Ny, Q * Ny),

where N, = N(0,0214) is a d-dimensional isotropic Gaussian.

Interpretation: X ~ P, Y ~ @Q and Z1,Zy ~ N,

X172 = X+Zi~PxN,

—> W, distance between smoothed distributions

Retain KR Duality: Wga) is W1 but between convolved distributions:

W(P,Q) = sup EF(X+7Z)—Ef(Y + Zy)
fELipy (R)
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P,Qi, e P(RY), i =1,... Then: W\(Q;, P) — 0 iff W1(Qs, P) — 0
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Foroy < os: WY2(PQ) < WI(P,Q) < W™ (P,Q) + 2d,/02 — o2
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High Level: Alleviate curse of dimensionality & get concentration

For any d > 1, o > 0 and sub-Gaussian P: EW%U)(Pn, P) < n=3

Under same assumptions: denote X 2 supp(u) and suppose
diam(&X') < oo, where diam(X) = sup, 4 cx |z —y||. Foranyt >0 we
have )

2tn

Wga)(ﬂna 1) — EW:(lo)(ﬂn7 N)’ > t) < 2¢ diam(x)2

Bon

Comments:

o Achieves n=2 bias rate vs n—1/? for W, - via maximal TV coupling arg

o “Variance” bounded at the same asymptotic rate - achieved via
McDiarmid’s inequality & KR duality

o Paper: more general statements allowing for non-Gaussian convqutionsg/11




Synthetic Data Experiments

d=5 d=10 d =100
- 125 -
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Convergence of W§"’ (fin, 1v) as a function of the number of samples n for

various values of o, shown in log-log space. The measure  is the uniform
distribution over [0, 1]%. Note that o = 0 corresponds to the vanilla
Wasserstein distance, which converges slower than GOT (observe the
difference in slopes), especially with larger d.
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» Popular in machine learning (esp. generative modeling)
» Wasserstein GAN produces outstanding empirical results

. T 1
» Empirical approximation is slow n™4d

o Smooth 1-Wasserstein: Convolve distributions w/ Gaussians

> Inherits metric structure & duality from the Wasserstein distance
» Well-behaved function of noise parameter & recovers Wy in limit

» Fast n~2 convergence of empirical approximation in all dimensions

Thank you!
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